Nanocrystallites La0.8Pb0.2(Fe0.8Co0.2)O3 (LPFC) when bonded through a surface layer (carbon) in small ensembles display surface sensitive magnetism useful for biological probes, electrodes, and toxic gas sensors. A simple dispersion and hydrolysis of the salts in ethylene glycol (EG) in water is explored to form ensembles of the nanocrystallites (NCs) by combustion of a liquid precursor gel slowly in microwave at 70-80 dgrees C (apparent) in a closed container in air. In a dilute sample, the EG molecules mediate hydrolyzed species to configure in small groups in process to form a gel. Proposed models describe how a residual carbon bridges a stable bonded layer of a graphene-oxide-like hybrid structure on the LPFC-NCs in attenuating the magnetic structure. SEM images, measured from a pelletized sample which was used to study the gas sensing features in terms of the electrical resistance, describe plate shaped NCs, typically 30-60 nm widths, 60-180 nm lengths and -50 m2/g surface area (after heating at -750 degrees C). These NCs are arranged in ensembles (200-900 nm size). As per the X-ray diffraction, the plates (a Pnma orthorhombic structure) bear only small strain -0.0023 N/m2 and oxygen vacancies. The phonon and electronic bands from a bonded surface layer disappear when it is etched out slowly by heating above 550 degrees C in air. The surface layer actively promotes selective H2 gas sensor properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.5819 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.
View Article and Find Full Text PDFSmall
January 2025
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea.
The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA.
Understanding the nature of π-stacking interactions is important to molecular recognition, self-assembly, and organic semiconductors. The stack bond order (SBO) model of π-stacking has shown that the conformations of dimers are found at orientations where the combinations of monomer MOs are overall bonding within the stack. DFT calculations show that parallel displaced minima found on the potential energy surface for the π-stacked dimers of pentacene and perfluoropentacene occur when the dimer MOs are constructed from combinations of monomer MOs with an allowed SBO.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Astronautics, Harbin Institute of Technology, Harbin, China.
Fe-N-C catalysts are considered promising substitutes for Pt-based catalysts at the cathode in direct methanol fuel cells (DMFCs) owing to their great methanol tolerance. However, Fe-N-C-based DMFCs commonly suffer from a decreased performance under extremely high methanol concentrations and exhibit poor stability, while the underlying mechanism remains controversial. In this study, a self-degradation phenomenon in a passive Fe-N-C-based DMFC was investigated in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!