J Nucleic Acids
Department of Chemistry and the Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, USA.
Published: August 2012
The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The synthesis was performed starting with 50 g of Boc anhydride to give 31 g of product in 32% overall yield. The Fmoc-protected PNA backbone is a key intermediate in the synthesis of nucleobase-modified PNA monomers. Thus, improved access to this molecule is anticipated to facilitate future investigations into the chemical properties and applications of nucleobase-modified PNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400375 | PMC |
http://dx.doi.org/10.1155/2012/354549 | DOI Listing |
Bioorg Chem
January 2025
Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India. Electronic address:
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.
View Article and Find Full Text PDFFront Antibiot
April 2024
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Initiation of chromosome replication is an essential stage of the bacterial cell cycle that is controlled by the DnaA protein. With the aim of developing novel antimicrobials, we have targeted the initiation of DNA replication, using antisense peptide nucleic acids (PNAs), directed against DnaA translation. A series of anti-DnaA PNA conjugated to lysine-rich bacterial penetrating peptides (PNA-BPPs) were designed to block DnaA translation.
View Article and Find Full Text PDFThe international symposium ASOBIOTICS 2024 brought together scientists across disciplines to discuss the challenges of advancing antibacterial antisense oligomers (ASOs) from basic research to clinical application. Hosted by the Helmholtz Institute for RNA-based Infection Research (HIRI) in Wurzburg, Germany, on September 12-13th, 2024, the event featured presentations covering major milestones and current challenges of this antimicrobial technology and its applications against pathogens, commensals, and bacterial viruses. General design principles and modification of ASOs based on peptide nucleic acid (PNA) or phosphorodiamidate-morpholino-oligomer (PMO) chemistry, promising cellular RNA targets, new delivery technologies, as well as putative resistance mechanisms were discussed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:
Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.
View Article and Find Full Text PDFNanoscale
January 2025
Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
Targeted delivery offers solutions for more efficient therapies with fewer side effects. Here, lipopeptides (LPs) prepared by conjugation of the nuclear-targeting peptide analogue H-YKQSHKKGGKKGSG-NH (NrTP6) and two lauric acid chains are used to encapsulate the chemotherapeutic agent doxorubicin (DX) through a solvent-exchange protocol. LPs spontaneously form nanosized rod-like assemblies in phosphate buffer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.