β,β-Dimethylacrylshikonin, one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we discussed the molecular mechanisms of β,β-dimethylacrylshikonin in the apoptosis of SGC-7901 cells. β,β-Dimethylacrylshikonin reduced the cell viability of SGC-7901 cells in a dose- and time-dependent manner and induced cell apoptosis. β,β-Dimethylacrylshikonin treatment in SGC-7901 cells down-regulated the expression of XIAP, cIAP-2, and Bcl-2 and up-regulated the expression of Bak and Bax and caused the loss of mitochondrial membrane potential and release of cytochrome c. Additionally, β,β-dimethylacrylshikonin treatment led to activation of caspases-9, 8 and 3, and cleavage of poly (ADP-ribose) polymerase (PARP), which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. β,β-Dimethylacrylshikonin induced phosphorylation of extracellular signal-regulated kinase (ERK) in SGC-7901 cells. U0126, a specific MEK inhibitor, blocked the ERK activation by β,β-dimethylacrylshikonin and abrogated β,β-dimethylacrylshikonin -induced apoptosis. Our results demonstrated that β,β-dimethylacrylshikonin inhibited growth of gastric cancer SGC-7901 cells by inducing ERK signaling pathway, and provided a clue for preclinical and clinical evaluation of β,β-dimethylacrylshikonin for gastric cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407073PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041773PLOS

Publication Analysis

Top Keywords

sgc-7901 cells
24
gastric cancer
12
ββ-dimethylacrylshikonin
11
cancer sgc-7901
8
cells ββ-dimethylacrylshikonin
8
ββ-dimethylacrylshikonin treatment
8
sgc-7901
6
cells
6
ββ-dimethylacrylshikonin induces
4
induces mitochondria
4

Similar Publications

Background/aim: Chemotherapy based on 5-fluorouracil (5-Fu) is the first-line treatment for advanced gastric cancer (GC) patients. Importantly, 5-Fu resistance is recognized as a major obstacle for the successful treatment of GC. Circular RNAs (circRNAs) are non-coding RNAs involved in the pathogenesis of GC.

View Article and Find Full Text PDF

Wogonin suppresses proliferation, invasion and migration in gastric cancer cells via targeting the JAK-STAT3 pathway.

Sci Rep

December 2024

Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.

Wogonin is a compound extracted from the medicinal plant Scutellaria baicalensis Geogi and has been found to exert antitumor activities in a variety of malignancies. However, the molecular mechanisms involved in the anti-gastric cancer (GC) effects of wogonin remain poorly understood. In the present study, we found that wogonin treatment inhibited the proliferation of GC cells, induced apoptosis and G0/G1 cell arrest, and suppressed the migration and invasion of SGC-7901 and BGC-823 cells in vitro.

View Article and Find Full Text PDF

Rhaponticin suppresses the stemness phenotype of gastric cancer stem-like cells CD133+/CD166 + by inhibiting programmed death-ligand 1.

BMC Gastroenterol

November 2024

Department of Gastroenterology, Shaanxi Provincial People's Hospital, No. 256 Friendship West Road, Beilin District, Xi'an, Shaanxi, 710068, China.

Article Synopsis
  • Gastric cancer stem cells (GCSCs) are crucial for tumor growth and recurrence, making them important targets for treatments; Rhaponticin (RA) is a new anticancer drug that may affect GCSCs' properties.
  • In experiments, isolated GCSCs showed stem-like traits and were sensitive to RA, which decreased their viability and stemness markers without harming normal cells; RA showed a pronounced effect in two specific gastric cancer cell lines.
  • Additionally, RA appears to target the PD-L1 gene, and studies in a mouse model demonstrated that RA significantly reduced tumor size compared to untreated GCSCs, suggesting potential therapeutic benefits for gastric cancer patients.
View Article and Find Full Text PDF

Correction.

FEBS Open Bio

December 2024

RETRACTION: Wogonoside Promotes Apoptosis in Gastric Cancer AGS and SGC-7901 Cells Through Induction of Mitochondrial Dysfunction and Endoplasmic Reticulum Stress X.M. Hu, J.

View Article and Find Full Text PDF

CRISPR/Cas13a Trans-Cleavage and Catalytic Hairpin Assembly Cascaded Signal Amplification Powered SERS Aptasensor for Ultrasensitive Detection of Gastric Cancer-Derived Exosomes.

Anal Chem

November 2024

State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Cancer-derived exosomes carry a large number of specific molecular profiles from cancer cells and have emerged as ideal biomarkers for early cancer diagnosis. Accurate detection of ultralow-abundance exosomes in complex biological samples remains a great challenge. Herein, a novel SERS aptasensor powered by cascaded signal amplification of CRISPR/Cas13a -cleavage and catalytic hairpin assembly (CHA) was proposed for ultrasensitive detection of gastric cancer-derived exosomes, which included hairpin-structured recognition aptamers (MUC1-apt), cascaded signal amplification (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!