Connexin36 (Cx36) plays an important role in insulin secretion by controlling the intercellular synchronization of Ca(2+) transients induced during stimulation. The lack of drugs acting on Cx36 channels is a major limitation in further unraveling the molecular mechanism underlying this effect. To screen for such drugs, we have developed an assay allowing for a semi-automatic, fluorimetric quantification of Ca(2+) transients in large populations of MIN6 cells. Here, we show that (1) compared to control cells, MIN6 cells with reduced Cx36 expression or function showed decreased synchrony of glucose-induced Ca(2+) oscillations; (2) glibenclamide, a sulphonylurea which promotes Cx36 junctions and coupling, increased the number of synchronous MIN6 cells, whereas quinine, an antimalarial drug which inhibits Cx36-dependent coupling, decreased this proportion; (3) several drugs were identified that altered the intercellular Ca(2+) synchronization, cell coupling and distribution of Cx36; (4) some of them also affected insulin content. The data indicate that the intercellular synchronization of Ca(2+) oscillations provides a reliable and non-invasive measurement of Cx36-dependent coupling, which is useful to identify novel drugs affecting the function of β-cells, neurons, and neuron-related cells that express Cx36.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405138PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041535PLOS

Publication Analysis

Top Keywords

intercellular synchronization
12
synchronization ca2+
12
ca2+ oscillations
12
cx36-dependent coupling
12
min6 cells
12
ca2+ transients
8
ca2+
6
cx36
6
coupling
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!