Lack of modulation of nicotinic acetylcholine alpha-7 receptor currents by kynurenic acid in adult hippocampal interneurons.

PLoS One

Center for Neuroscience, Institute for Behavioral Genetics, Department of Neuroscience, University of Colorado at Boulder, Boulder, Colorado, United States of America.

Published: April 2013

Kynurenic acid (KYNA), a classical ionotropic glutamate receptor antagonist is also purported to block the α7-subtype nicotinic acetylcholine receptor (α7* nAChR). Although many published studies cite this potential effect, few have studied it directly. In this study, the α7*-selective agonist, choline, was pressure-applied to interneurons in hippocampal subregions, CA1 stratum radiatum and hilus of acute brain hippocampal slices from adolescent to adult mice and adolescent rats. Stable α7* mediated whole-cell currents were measured using voltage-clamp at physiological temperatures. The effects of bath applied KYNA on spontaneous glutamatergic excitatory postsynaptic potentials (sEPSC) as well as choline-evoked α7* currents were determined. In mouse hilar interneurons, KYNA totally blocked sEPSC whole-cell currents in a rapid and reversible manner, but had no effect on choline-evoked α7* whole-cell currents. To determine if this lack of KYNA effect on α7* function was due to regional and/or species differences in α7* nAChRs, the effects of KYNA on choline-evoked α7* whole-cell currents in mouse and rat stratum radiatum interneurons were tested. KYNA had no effect on either mouse or rat stratum radiatum interneuron choline-evoked α7* whole-cell currents. Finally, to test whether the lack of effect of KYNA was due to unlikely slow kinetics of KYNA interactions with α7* nAChRs, recordings of a7*-mediated currents were made from slices that were prepared and stored in the presence of 1 mM KYNA (>90 minutes exposure). Under these conditions, KYNA had no measurable effect on α7* nAChR function. The results show that despite KYNA-mediated blockade of glutamatergic sEPSCs, two types of hippocampal interneurons that express choline-evoked α7* nAChR currents fail to show any degree of modulation by KYNA. Our results indicate that under our experimental conditions, which produced complete KYNA-mediated blockade of sEPSCs, claims of KYNA effects on choline-evoked α7* nAChR function should be made with caution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405093PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041108PLOS

Publication Analysis

Top Keywords

choline-evoked α7*
24
whole-cell currents
20
α7* nachr
16
kyna
12
α7*
12
stratum radiatum
12
α7* whole-cell
12
currents
9
nicotinic acetylcholine
8
kynurenic acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!