The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo.

J Pathol

Neuromuscular Disorders Unit, Neurology Department, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.

Published: December 2012

Pericytes are periendothelial cells that have been involved in many different functions including a possible role as mesodermal stem/progenitor cells. In the present study we demonstrate that alkaline phosphatase (AP) expression is specific for human muscular pericytes and can be used as a marker to identify them in skeletal muscle biopsies. We studied the pericyte population in skeletal muscle biopsies from controls, myopathic and neuropathic patients. We observed a significant increase in the number of pericytes only in myopathies that correlated with the number of NCAM(+) fibres, suggesting that an active muscular degenerative/regenerative process is related to an increase in the pericyte population. AP(+) pericytes sorted from skeletal muscle samples were able to activate the myogenic programme and fuse with both mononucleate satellite cells and mature multinucleated myotubes in vitro, demonstrating that they could participate in muscle regeneration. In accordance, pericytes expressing the myogenic transcription factor MyoD were found in biopsies of myopathic biopsies. All these data support the hypothesis that, apart from satellite cells, pericytes may play an important role in muscle regeneration in adult human muscles in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.4083DOI Listing

Publication Analysis

Top Keywords

pericyte population
12
muscle regeneration
12
skeletal muscle
12
increase pericyte
8
role muscle
8
muscle biopsies
8
satellite cells
8
muscle
6
pericytes
6
population human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!