Chronic inflammation alters production and release of glutathione and related thiols in human U373 astroglial cells.

Cell Mol Neurobiol

Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith South, Campbelltown, NSW, 1797, Australia.

Published: January 2013

Neurons rely on glutathione (GSH) and its degradation product cysteinylglycine released by astrocytes to maintain their antioxidant defences. This is particularly important under conditions of inflammation and oxidative stress, as observed in many neurodegenerative diseases including Alzheimer's disease (AD). The effects of inflammatory activation on intracellular GSH content and the extracellular thiol profile (including cysteinylglycine and homocysteine) of astrocytes were investigated. U373 astroglial cells exposed to IL-1β and TNF-α for up to 96 h showed a dose-dependent increase in IL-6 release, indicative of increasing pro-inflammatory cellular activation. With increasing concentrations of IL-1β and TNF-α (0.01-1 ng/ml), an increase in both intracellular and extracellular GSH levels was observed, followed by a return to control levels in response to higher concentrations of IL-1β and TNF-α. Extracellular levels of cysteinylglycine decreased in response to all concentrations of IL-1β and TNF-α. In contrast, levels of the neurotoxic thiol homocysteine increased in a dose-dependent manner to IL-1β and TNF-α-induced activation. Our results suggest that chronically activated astrocytes in the brain might fail to adequately maintain GSH substrate delivery to neurons, thus promoting neuronal vulnerability. They might also explain the elevated levels of homocysteine found in the brains and serum of patients with AD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-012-9867-6DOI Listing

Publication Analysis

Top Keywords

il-1β tnf-α
16
concentrations il-1β
12
u373 astroglial
8
astroglial cells
8
il-1β
5
levels
5
chronic inflammation
4
inflammation alters
4
alters production
4
production release
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!