Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction.

Phys Chem Chem Phys

Laboratory of Organic NanoPhotonics and Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China.

Published: September 2012

We have successfully prepared gold nanoparticles (AuNPs) with flower-like and spherical morphology through multi-photon photoreduction (MPR) of an aqueous solution of HAuCl(4) and (2-hydroxyethyl) trimethylammonium glycinate ([HETMA][Gly]) ionic liquid (IL) through the use of a femtosecond laser. The results of (1)H NMR and UV-Vis absorption indicated that AuNPs were produced from the photoreduction of the [Gly]-Au(iii) complex. Spherical AuNPs of about 2.5 nm were obtained on the solution when irradiated for 2 h, then aggregated into flower-like AuNPs of several tens of nanometers assisted by the IL with an increase in the irradiation time. Furthermore, precipitates of spherical AuNPs with the size of around 15 nm were formed after being irradiated for 6 h. The mechanisms of the MPR reaction and controlled growth of AuNPs have also been discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp41869jDOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
ionic liquid
8
multi-photon photoreduction
8
spherical aunps
8
aunps
6
nanoparticles prepared
4
prepared glycinate
4
glycinate ionic
4
liquid assisted
4
assisted multi-photon
4

Similar Publications

The medical and cosmetic industries have developed in recent years, there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications.

View Article and Find Full Text PDF

Pen direct writing of multiplex-LFIA for detection of thiamphenicol and tylosin in milk.

Mikrochim Acta

January 2025

Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland.

Therapeutic and misuse of veterinary drugs, such as antibiotics, can increase the potential risk of residue contamination in animal-derived food products. For milk, these residual antibiotics can have an impact on efficiency in dairy processing factories, as well as economic loss, and can also cause side effects on consumer health. Lateral flow immunoassays (LFIAs) are gaining popularity for their ease of use, low cost and their fulfilment to the REASSURED (real-time connection/monitoring, easy sampling, affordable, specific, user-friendly, rapid/robust, equipment free, deliverable to end user) criteria.

View Article and Find Full Text PDF

Monitoring of the Local Extracellular Environment Using Chiral Gold Nanoparticles.

J Am Chem Soc

January 2025

CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.

In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.

View Article and Find Full Text PDF

Amplification-free CRISPR/Cas based dual-enzymatic colorimetric nucleic acid biosensing device.

Lab Chip

January 2025

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!