Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis.

J Biol Chem

Center for Molecular Chaperone/Radiobiology and Cancer Virology, Georgia Health Sciences University, Augusta, Georgia 30912. Electronic address:

Published: October 2012

ErbB2/Neu oncogene is overexpressed in 25% of invasive/metastatic breast cancers. We have found that deletion of heat shock factor Hsf1 in mice overexpressing ErbB2/Neu significantly reduces mammary tumorigenesis and metastasis. Hsf1(+/-)ErbB2/Neu(+) tumors exhibit reduced cellular proliferative and invasive properties associated with reduced activated ERK1/2 and reduced epithelial-mesenchymal transition (EMT). Hsf1(+/+)Neu(+) mammary epithelial cells exposed to TGFβ show high levels of ERK1/2 activity and EMT; this is associated with reduced expression of E-cadherin and increased expression of Slug and vimentin, a mesenchymal marker. In contrast, Hsf1(-/-)Neu(+) or Hsf1(+/+)Neu(+) cells do not exhibit activated ERK1/2 and show reduced EMT in the presence of TGFβ. The ineffective activation of the RAS/RAF/MEK/ERK1/2 signaling pathway in cells with reduced levels of HSF1 is due to the low levels of HSP90 in complex with RAF1 that are required for RAF1 stability and maturation. These results indicate a powerful inhibitory effect conferred by HSF1 downstream target genes in the inhibition of ErbB2-induced breast cancers in the absence of the Hsf1 gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471706PMC
http://dx.doi.org/10.1074/jbc.M112.377481DOI Listing

Publication Analysis

Top Keywords

heat shock
8
shock factor
8
factor hsf1
8
mammary tumorigenesis
8
tumorigenesis metastasis
8
breast cancers
8
associated reduced
8
activated erk1/2
8
erk1/2 reduced
8
reduced
6

Similar Publications

Heat acclimation mediates cellular protection via HSP70 stabilization of HIF-1α protein in extreme environments.

Int J Biol Sci

January 2025

Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Heat acclimation (HA) is an evolutionarily conserved trait that enhances tolerance to novel stressors by inducing heat shock proteins (HSPs). However, the molecular mechanisms underlying this phenomenon remain elusive. In this study, we established a HA mouse model through intermittent heat stimulation.

View Article and Find Full Text PDF

Autoimmune inner ear disease (AIED) is a rare condition characterized by immune-mediated damage to the inner ear, leading to progressive sensorineural hearing loss (SNHL) and vestibular symptoms such as vertigo and tinnitus. This study investigates the pathogenesis and therapeutic strategies for AIED through the analysis of three cases with different underlying autoimmune disorders: rheumatoid arthritis, relapsing polychondritis, and IgG4-related disease. The etiology of AIED involves complex immunopathological mechanisms, including molecular mimicry and the "bystander effect," with specific autoantibodies, such as those against heat shock protein 70 (HSP70), playing a potential role in cochlear damage.

View Article and Find Full Text PDF

Evaluation of cellular and physiological alterations of cells from Mytilus galloprovincialis exposed to benzisothiazolinone.

Ecotoxicol Environ Saf

December 2024

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, Messina 98166, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy. Electronic address:

Benzisothiazolinone (BIT) is a preservative and antimicrobial agent widely used in various household and industrial products. It is readily detectable in pesticides, polishes, printing inks and detergents. This extensive use is reflected in a vast amount of this compound in the environment, which may cause toxic effects in organisms that come in contact with it.

View Article and Find Full Text PDF

A Chemical Redox Cycling-Based Dual-Mode Biosensor for Self-Powered Photoelectrochemical and Colorimetric Assay of Heat Shock Protein.

ACS Sens

January 2025

College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.

To advance the biological understanding of heat shock protein (HSP) in different types of cancers, it is crucial to achieve its accurate determination. Herein, a dual-mode self-powered photoelectrochemical (PEC) and colorimetric platform was proposed by integrating enzymatic catalysis and a chemical redox cycling amplification strategy. In this system, ascorbic acid (AA), as the signal reporter for PEC and colorimetric assay, can be regenerated during the tris(2-carboxyethyl) phosphine-mediated chemical redox cycling process.

View Article and Find Full Text PDF

Background: Physical activity has been found to improve liver health by reducing oxidative stress (OS), possibly through the protein irisin. Heat shock proteins (HSPs) and microRNAs (miRNAs) help regulate the body's response to stress and maintain cellular health. This study aimed to investigate the expression of the HSP70 gene and protein, miR-223a, and serum irisin levels in the liver after 8 weeks of endurance exercise or irisin injection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!