Plague, a disease caused by Yersinia pestis introduced into North America about 100 years ago, is devastating to prairie dogs and the highly endangered black-footed ferret. Current attempts to control plague in these species have historically relied on insecticidal dusting of prairie dog burrows to kill the fleas that spread the disease. Although successful in curtailing outbreaks in most instances, this method of plague control has significant limitations. Alternative approaches to plague management are being tested, including vaccination. Currently, all black-footed ferret kits released for reintroduction are vaccinated against plague with an injectable protein vaccine, and even wild-born kits are captured and vaccinated at some locations. In addition, a novel, virally vectored, oral vaccine to prevent plague in wild prairie dogs has been developed and will soon be tested as an alternative, preemptive management tool. If demonstrated to be successful, oral vaccination of selected prairie dog populations could decrease the occurrence of plague epizootics in key locations, thereby reducing the source of bacteria while avoiding the indiscriminate environmental effects of dusting. Just as rabies in wild carnivores has largely been controlled through an active surveillance and oral vaccination program, we believe an integrated plague management strategy would be similarly enhanced with the addition of a cost-effective, bait-delivered, sylvatic plague vaccine for prairie dogs. Control of plague in prairie dogs, and potentially other rodents, would significantly advance prairie dog conservation and black-footed ferret recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10393-012-0783-5DOI Listing

Publication Analysis

Top Keywords

prairie dogs
16
black-footed ferret
12
prairie dog
12
plague
10
sylvatic plague
8
plague vaccine
8
control plague
8
plague management
8
oral vaccination
8
prairie
7

Similar Publications

Morphological change in an isolated population of red squirrels () in Britain.

R Soc Open Sci

January 2025

Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.

The mechanical properties of dietary items are known to influence skull morphology, either through evolution or by phenotypic plasticity. Here, we investigated the impact of supplementary feeding of peanuts on the morphology of red squirrels () from five populations in Britain (North Scotland, Borders, Jersey and two temporally distinct populations from Formby (Merseyside)). Stable isotope analysis confirmed dietary ecology in 58 specimens.

View Article and Find Full Text PDF

Unlabelled: Dietary flexibility allows animals to respond adaptively to food pulses in the environment. Here we document the novel emergence of widespread hunting of California voles and carnivorous feeding behavior by California ground squirrels. Over two months in the twelfth year of a long-term study on the squirrel population, we document 74 events of juvenile and adult ground squirrels of both sexes depredating, consuming, and/or competing over vole prey.

View Article and Find Full Text PDF

Humans may play a key role in providing small prey mammals spatial and temporal refuge from predators, but few studies have captured the heterogeneity of these effects across space and time. Global COVID-19 lockdown restrictions offered a unique opportunity to investigate how a sudden change in human presence in a semi-urban park impacted wildlife. Here, we quantify how changes in the spatial distributions of humans and natural predators influenced the landscape of fear for the California ground squirrel (Otospermophilus beecheyi) in a COVID-19 pandemic (2020) and non-COVID (2019) year.

View Article and Find Full Text PDF

It has recently been recognised that populations are rarely in demographic equilibrium, but rather in a 'transient' state. To examine how transient dynamics influence our empirical understanding of the links between changes in demographic rates and population growth, we conducted a 32-year study of Columbian ground squirrels. The population increased rapidly for 10 years, followed by a 2-year crash, and a gradual 19-year recovery.

View Article and Find Full Text PDF

Hibernating mammals experience severe hemodynamic changes over the torpor-arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!