The role of MAP4K3 in lifespan regulation of Caenorhabditis elegans.

Biochem Biophys Res Commun

Barshop Institute for Longevity and Aging Studies, Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78240, USA.

Published: August 2012

The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditis elegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.07.113DOI Listing

Publication Analysis

Top Keywords

lifespan regulation
8
caenorhabditis elegans
8
tor pathway
8
tor activation
8
lifespan
7
tor
6
pathway
5
map4k3
5
role map4k3
4
map4k3 lifespan
4

Similar Publications

Ferredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.

View Article and Find Full Text PDF

During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals Norathyriol Prolongs the Lifespan via Regulating Metabolism in .

Metabolites

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.

Background: Aging and age-related diseases are closely linked to an imbalance in energy supply and demand, a condition that can potentially be mitigated through various interventions, including the use of naturally occurring molecules. Norathyriol (NL), a tetrahydroxyxanthone compound, is prevalent in mango fruit and medicinal plants. While studies have indicated that NL may influence metabolism, its effects on aging have not been extensively explored.

View Article and Find Full Text PDF

Background: Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (; also known as ) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the gene in human muscle physiology, and particularly in athletic populations, remains poorly understood.

View Article and Find Full Text PDF

Correlation analysis of the impact of juvenile on gut microbiota and transcriptome in mice.

Microbiol Spectr

December 2024

Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.

Unlabelled: remains a non-negligible global zoonosis, imposing serious socio-economic burdens in endemic regions. The interplay between gut microbiota and the host transcriptome is crucial for maintaining health; however, the impact of juvenile infection on these factors is still poorly understood. This study aimed to investigate their relationship and potential pathogenic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!