The prokaryotic DNA protection during starvation (Dps) proteins typically protect macromolecules against damaging agents via physical association with DNA and by oxidizing and sequestering iron. However, Deinococcus radiodurans Dps-1, which binds DNA with high affinity, fails to protect DNA against hydroxyl radicals due to iron leakage from the core, raising the question of how (•)OH-mediated damage to Dps-1-bound DNA is avoided. As shown here, Mn(II) inhibits ferroxidase activity, suggesting that ferroxidation may be prevented in vivo as D. radiodurans accumulates a high ratio of Mn:Fe. Dps-1 has an N-terminal extension with a unique metal-binding site, an extension that has been proposed to be important for DNA binding and dodecameric assembly. Electrophoretic mobility shift assays show that Mn(II) restores DNA binding to bipyridyl-treated Dps-1, whereas Fe(II) fails to do so in the presence of H(2)O(2), thus preventing DNA binding under conditions of ongoing ferroxidase activity. We also show that disruption of the N-terminal metal site leads to a significant reduction in DNA binding and to compromised oligomeric assembly, with the mutant protein assembling into a hexamer in the presence of divalent metal. We propose that securing the N-terminal loop by metal binding is required to initiate dodecameric assembly by contacting the neighboring dimer and that the absence of such optimal contacts results in formation of a hexameric assembly intermediate in which three dimers associate about one of the 3-fold axes. Once dodecameric Dps-1 is assembled, metal binding no longer affects oligomeric state; instead, differential metal binding controls DNA interaction under conditions of oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi300703x | DOI Listing |
iScience
January 2025
Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.
View Article and Find Full Text PDFWorld J Clin Oncol
January 2025
Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China.
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
The rising resistance to fluoroquinolones in Typhimurium poses a significant global health challenge. This computational research addresses the pressing need for new therapeutic drugs by utilizing various computational tools to identify potential natural compounds that can inhibit the triple mutant DNA gyrase subunit A enzyme, which is crucial in fluoroquinolone resistance. Initially, the three-dimensional structure of the wild-type DNA gyrase A protein was modeled using homology modeling, and followed by mutagenesis to create the clinically relevant triple mutant (SER83PHE, ASP87GLY, ALA119SER) DNA gyrase A protein structure.
View Article and Find Full Text PDFACS Omega
January 2025
Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.
The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFSmall
January 2025
CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy.
Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!