Large-scale protein-protein interaction data sets have been generated for several species including yeast and human and have enabled the identification, quantification, and prediction of cellular molecular networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-scale analysis of protein complexes, performed by immunopurifying a specific "bait" protein and its associated "prey" proteins. The analysis and interpretation of AP-MS data sets is, however, not straightforward. In addition, although yeast AP-MS data sets are relatively comprehensive, current human AP-MS data sets only sparsely cover the human interactome. Here we develop a framework for analysis of AP-MS data sets that addresses the issues of noise, missing data, and sparsity of coverage in the context of a current, real world human AP-MS data set. Our goal is to extend and increase the density of the known human interactome by integrating bait-prey and cocomplexed preys (prey-prey associations) into networks. Our framework incorporates a score for each identified protein, as well as elements of signal processing to improve the confidence of identified protein-protein interactions. We identify many protein networks enriched in known biological processes and functions. In addition, we show that integrated bait-prey and prey-prey interactions can be used to refine network topology and extend known protein networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777680 | PMC |
http://dx.doi.org/10.1021/pr300227y | DOI Listing |
ACS Nano
January 2025
Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore.
Machine-learned potentials (MLPs) have transformed the field of molecular simulations by scaling "quantum-accurate" potentials to linear time complexity. While they provide more accurate reproduction of physical properties as compared to empirical force fields, it is still computationally costly to generate their training data sets from ab initio calculations. Despite the emergence of foundational or general MLPs for organic molecules and dense materials, it is unexplored if one general MLP can be effectively developed for a wide variety of nanoporous metal-organic frameworks (MOFs) with different chemical moieties and geometric properties.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Leibniz ScienceCampus Primate Cognition and German Center for Child and Adolescent Health (DZKJ), Göttingen, Germany.
Background: To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors.
View Article and Find Full Text PDFSci Data
January 2025
Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.
View Article and Find Full Text PDFSci Data
January 2025
State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Anisarchus medius (Reinhardt, 1837) is a widely distributed Arctic fish, serving as an indicator of climate change impacts on coastal Arctic ecosystems. This study presents a chromosome-level genome assembly for A. medius using PacBio sequencing and Hi-C technology.
View Article and Find Full Text PDFSci Data
January 2025
Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
The sharing of multimodal magnetic resonance imaging (MRI) data is of utmost importance in the field, as it enables a deeper understanding of facial nerve-related pathologies. However, there is a significant lack of multi-modal neuroimaging databases specifically focused on these conditions, which hampers our comprehensive knowledge of the neural foundations of facial paralysis. To address this critical gap and propel advancements in this area, we have released the Multimodal Neuroimaging Dataset of Meige Syndrome, Facial Paralysis, and Healthy Controls (MND-MFHC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!