Epigenetic silencing of cancer-related genes by abnormal methylation and the reversal of this process by DNA methylation inhibitors represents a promising strategy in cancer therapy. As DNA methylation affects gene expression and chromatin structure, we investigated the effects of novel DNMT (DNA methyltransferase) inhibitor, RG108, alone and in its combinations with structurally several HDAC (histone deacetylase) inhibitors [sodium PB (phenyl butyrate) or BML-210 (N-(2-aminophenyl)-N'phenyloctanol diamine), and all-trans RA (retinoic acid)] in the human PML (promyelocytic leukaemia) NB4 cells. RG108 at different doses from 20 to 100 μM caused time-, but not a dose-dependent inhibition of NB4 cell proliferation without cytotoxicity. Temporal pretreatment with RG108 before RA resulted in a dose-dependent cell growth inhibition and remarkable acceleration of granulocytic differentiation. Prolonged treatments with RG108 and RA in the presence of HDAC inhibitors significantly increased differentiation. RG108 caused time-dependent re-expression of methylation-silenced E-cadherin, with increase after temporal or continuous treatments with RG108 and RA, or RA together with PB in parallel, in cell maturation, suggesting the role of E-cadherin as a possible therapeutic marker. These processes required both PB-induced hyperacetylation of histone H4 and trimethylation of histone H3 at lysine 4, indicating the cooperative action of histone modifications and DNA methylation/demethylation in derepression of E-cadherin. This work provides novel experimental evidence of the beneficial role of the DNMT inhibitor RG108 in combinations with RA and HDACIs in the effective differentiation of human PML based on epigenetics.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CBI20110649DOI Listing

Publication Analysis

Top Keywords

inhibitor rg108
12
dna methyltransferase
8
methyltransferase inhibitor
8
rg108
8
histone deacetylase
8
deacetylase inhibitors
8
nb4 cell
8
dna methylation
8
rg108 combinations
8
human pml
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!