We have utilized a novel application of human genetics, illuminating the important role that rare genetic disorders can play in the development of novel drugs that may be of relevance for the treatment of both rare and common diseases. By studying a very rare Mendelian disorder of absent pain perception, congenital indifference to pain, we have defined Nav1.7 (endocded by SCN9A) as a critical and novel target for analgesic development. Strong human validation has emerged with SCN9A gain-of-function mutations causing inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder, both Mendelian disorder of spontaneous or easily evoked pain. Furthermore, variations in the Nav1.7 channel also modulate pain perception in healthy subjects as well as in painful conditions such as osteoarthritis and Parkinson disease. On the basis of this, we have developed a novel compound (XEN402) that exhibits potent, voltage-dependent block of Nav1.7. In a small pilot study, we showed that XEN402 blocks Nav1.7 mediated pain associated with IEM thereby demonstrating the use of rare genetic disorders with mutant target channels as a novel approach to rapid proof-of-concept. Our approach underscores the critical role that human genetics can play by illuminating novel and critical pathways pertinent for drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1399-0004.2012.01942.x | DOI Listing |
Infect Dis Ther
January 2025
Vaccine Research and Development, Pfizer R&D UK Ltd, Marlow, UK.
Introduction: Infants and young children typically have the highest age-related risk of invasive meningococcal disease. The immunogenicity and safety of a single primary dose and a booster of a meningococcal A/C/W/Y tetanus toxoid conjugate vaccine (MenACWY-TT; Nimenrix) in infants were evaluated.
Methods: In this phase 3b, open-label, single-arm study, healthy 3-month-old infants received a single Nimenrix dose followed by a booster at age 12 months (1 + 1 series).
Endocrine
January 2025
Pediatric Unit, IRCCS AOU of Bologna, Bologna, Italy.
J Nephrol
January 2025
Department of Nephrology, Beaumont Hospital, Dublin, Ireland.
Background: Autosomal dominant polycystic kidney disease (ADPKD) is caused primarily by pathogenic variants in the PKD1 and PKD2 genes. Although the type of ADPKD variant can influence disease severity, rare, hypomorphic PKD1 variants have also been reported to modify disease severity or cause biallelic ADPKD. This study examines whether rare, additional, potentially protein-altering, non-pathogenic PKD1 variants contribute to ADPKD phenotypic outcomes.
View Article and Find Full Text PDFJ Neurooncol
January 2025
Cancer Surveillance Branch, International Agency for Research On Cancer (IARC), 25 Avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, Lyon, France.
Background: Global comparisons of the burden and impact of cancers of the brain and central nervous system (CNS) are critical for developing effective control strategies and generating etiological hypotheses to drive future research.
Methods: National incidence estimates were obtained from GLOBOCAN 2022, and recorded incidence data from the Cancer in Five Continents series, both developed and compiled by the International Agency for Research on Cancer. We examined the estimated age-standardized incidence rates in 185 countries, as well as time trends in recorded incidence in 35 countries, quantifying the direction and change in the magnitude of the rates using the estimated average percentage change (EAPC).
Syst Parasitol
January 2025
A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia.
Pulmovermis cyanovitellosus Coil and Kuntz, 1960 is a species of hemiurid trematode that localizes in the lung of sea snakes, an unusual trait for this group of parasites. Recent molecular phylogenetic studies based on 28S rRNA gene sequences have shown that this species is closely related to members of the genus Lecithochirium Lühe, 1901. This finding is unexpected given that Pulmovermis Coil and Kuntz, 1960 and Lecithochirium are currently classified in different subfamilies of Hemiuridae (Pulmoverminae Sandars, 1961 vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!