The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402542 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041098 | PLOS |
Front Mol Neurosci
January 2025
Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
Multiple sclerosis (MS) affects 2.8 million people worldwide. Although the cause is unknown, various risk factors might be involved.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2025
Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
The EIF4G1 gene has been considered an autosomal dominant cause of Parkinson disease (PD), even if its role is still debated. The objective of this study was to describe the phenotype and α-synuclein distribution in peripheral tissues in 2 related PD patients (mother and daughter), who are carriers of the same variant in exon 10 of EIF4G1 (c.1216G>A, p.
View Article and Find Full Text PDFPediatr Neurol
January 2025
Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
Background: To explore the utility of general movements assessment as a predictive tool of the neurological outcome in term-born infants with hypoxic-ischemic encephalopathy (HIE) at ages six and 12 months.
Methods: This prospective observational study was conducted for 18 months (August 2018 to December 2019). Term-born newborns with HIE were included.
Int Immunopharmacol
January 2025
Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. Electronic address:
Background: Circulating levels of the female hormone estrogen has been associated with the development of Parkinson's disease (PD), although the underlying mechanism remains unclear. Immune homeostasis mediated by peripheral regulatory T cells (Treg) is a crucial factor in PD. The aim of this study was to explore the effects of estrogen deficiency on neuroinflammation and neurodegeneration in a rodent model of PD, with particular reference to Treg.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!