The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD(®), also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393340PMC
http://dx.doi.org/10.1093/jrr/rrs001DOI Listing

Publication Analysis

Top Keywords

radiation-induced hematopoietic
8
hematopoietic gastrointestinal
8
gastrointestinal damage
8
p53 signaling
8
peripheral blood
8
bone marrow
8
ex-rad treatment
8
radiation injury
8
ex-rad
7
radiation
5

Similar Publications

A novel therapeutic strategy for leukopenia: Miltefosine activates the Ras/MEK/ERK pathway to promote neutrophil differentiation.

Biochem Biophys Res Commun

December 2024

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China. Electronic address:

Leukopenia, marked by diminished white blood cell (WBC) counts, presents significant challenges in the management of hematological malignancies and immunocompromised patients. This study evaluated the therapeutic potential of miltefosine (MFS), a phospholipid analogue, for treating leukopenia. In vitro studies using HL60 and NB4 cells revealed that MFS effectively promoted neutrophil differentiation and function, evidenced by the upregulation of surface markers CD11b, CD11c, CD14, and CD15, as well as enhanced bactericidal activity assessed through the NBT reduction assay.

View Article and Find Full Text PDF

Ionizing radiation-induced injury often occurs in nuclear accidents or large-dose radiotherapy, leading to acute radiation syndromes characterized by hematopoietic and gastrointestinal injuries even to death. However, current radioprotective drugs are only used in hospitals with unavoidable side effects. Here, we heated the aqueous solution of inulin, a polysaccharide dietary fiber, forming colon-retentive gel as a radiation protector in radiotherapy.

View Article and Find Full Text PDF

Purpose: The present study was carried out to evaluate the radioprotective activities of N-acetyl-L-tryptophan (L-NAT) using rodent and non-human primate (NHP) models.

Materials And Methods: The antagonistic effect of L-NAT on the Transient receptor potential vanilloid-1 (TRPV1) receptor and substance P inhibition was determined using molecular docking and Elisa assays. The in radioprotective activity of L-NAT was evaluated using whole-body survival assays in mice and NHPs.

View Article and Find Full Text PDF

Cell-based and extracellular vesicle-based MSC therapies for acute radiation syndrome affecting organ systems.

J Radiat Res

December 2024

Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.

Exposure to ionizing radiation can induce harmful biological effects on the human body, particularly in cases of high-dose γ-irradiation affecting the gastrointestinal tract, bone marrow, skin and lung. Such exposures lead to lethal outcomes as individuals experience a breakdown in their immune system's ability to defend against pathogens, predisposing them to sepsis-induced multiple organ failures. Mesenchymal stromal/stem cells (MSCs) possess diverse biological characteristics, including immunomodulation, anti-inflammation and tissue regeneration.

View Article and Find Full Text PDF

The increasing use of radiation presents a risk of radiation exposure, making the development of radioprotectors necessary. In the previous study, it is investigated that Deinococcus radiodurans (R1-EVs) exert the antioxidative properties. However, the radioprotective activity of R1-EVs remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!