Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Type 2 diabetes is characterized by a deficit in β-cell function and mass, and its incidence increases with age. Autophagy is a highly regulated intracellular process for degrading cytoplasmic components, particularly protein aggregates and damaged organelles. Impaired or deficient autophagy is believed to cause or contribute to aging and age-related disease. Autophagy may be necessary to maintain structure, mass, and function of pancreatic β-cells. In this study, we investigated the effects of age on β-cell function and autophagy in pancreatic islets of 4-month-old (young), 14-month-old (adult), and 24-month-old (old) male Wistar rats. We found that islet β-cell function decreased gradually with age. Protein expression of the autophagy markers LC3/Atg8 and Atg7 exhibited a marked decline in aged islets. The expression of Lamp-2, a good indicator of autophagic degradation rate, was significantly reduced in the islets of old rats, suggesting that autophagic degradation is decreased in the islets of aged rats. However, protein expression of beclin-1/Atg6, which plays an important role in the induction and formation of the pre-autophagosome structure by associating with a multimeric complex of autophagy regulatory proteins (Atg14, Vps34/class 3 PI3 kinase, and Vps15), was most prominent in the islets of adult rats, and was higher in 24-month-old islets than in 4-month-old islets. The levels of p62/SQSTM1 and polyubiquitin aggregates, representing the functions of autophagy and proteasomal degradation, were increased in aging islets. 8-Hydroxydeoxyguanosine, a marker of mitochondrial and nuclear DNA oxidative damage, exhibited strong immunostaining in old islets. Analysis by electron microscopy demonstrated swelling and disintegration of cristae in the mitochondria of aged islets. These results suggest that β-cell and autophagic function in islets decline simultaneously with increasing age in Wistar rats, and that impaired autophagy in the islets of older rats may cause accumulation of misfolded and aggregated proteins and reduce the removal of abnormal mitochondria in β-cells, leading to reduced β-cell function. Dysfunctional autophagy in islets during the aging process may be an important mechanism leading to the development of type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776112 | PMC |
http://dx.doi.org/10.1007/s11357-012-9456-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!