Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomass exhibits structural and chemical complexity over multiple size scales, presenting many challenges to the effective characterization of these materials. The macroscopic nature of plants requires that some form of size reduction, such as dissection and microtomy, be performed to prepare samples and reveal features of interest for any microscopic and nanoscopic analyses. These size reduction techniques, particularly sectioning and microtomy, are complicated by the inherent porosity of plant tissue that often necessitates fixation and embedding in a supporting matrix to preserve structural integrity. The chemical structure of plant cell walls is vastly different from that of the membrane bound organelles and protein macromolecular complexes within the cytosol, which are the focus of many traditional transmission electron microscopy (TEM) investigations in structural biology; thus, staining procedures developed for the latter are not optimized for biomass. While the moisture content of biomass is dramatically reduced compared to the living plant tissue, the residual water is still problematic for microscopic techniques conducted under vacuum such as scanning electron microscopy (SEM). This requires that samples must be carefully dehydrated or that the instrument must be operated in an environmental mode to accommodate the presence of water. In this chapter we highlight tools and techniques that have been successfully used to address these challenges and present procedural details regarding the preparation of biomass samples that enable effective and accurate multi-scale microscopic analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-956-3_4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!