Measuring and modeling ammonium adsorption by calcareous soils.

Environ Monit Assess

Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

Published: April 2013

The aim of this study was assessment of ammonium (NH 4(+) ) adsorption isotherms in some agricultural calcareous soils and modeling of that by using the mechanistic exchange model. Ten surface soils (0-30 cm) were collected from areas covered with different land uses in Hamedan, western Iran. Isotherm experiments were carried out by concentrations of NH 4(+) prepared from NH4Cl salt (0, 10, 20, 30, 40, 50, 100, and 150 mg NH 4(+)  l(-1)) in presence of 0.01 M CaCl2 solution. The empirical models including simple adsorption isotherm and Freundlich equations were fitted well to the experimental data. The average amounts of adsorbed NH 4(+) in studied soils varied from 8.95 to 35.23 %. Adsorption percentage indicated positive correlation with pH, cation-exchange capacity (CEC), equivalent calcium carbonate, and clay content and had negative correlation with sand content. In order to predict and model NH 4(+) adsorption, cation-exchange model in PHREEQC program was used. The model could simulate the NH 4(+) adsorption very well in all studied soils. The values of CEC played the major role in modeling of NH 4(+) adsorption in this study indicating that cation-exchange process was the major mechanism controlling NH 4(+) adsorption in studied soils.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-012-2782-yDOI Listing

Publication Analysis

Top Keywords

studied soils
12
adsorption
8
ammonium adsorption
8
calcareous soils
8
soils
6
measuring modeling
4
modeling ammonium
4
adsorption calcareous
4
soils aim
4
aim study
4

Similar Publications

Background: Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of , a native South American plant and one that is economically useful in the whole of the Amazon.

View Article and Find Full Text PDF

Subcellular spatial regulation of immunity-induced phosphorylation of RIN4 links PAMP-triggered immunity to Exo70B1.

Front Plant Sci

December 2024

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States.

RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4) in transgenic lines expressing various RIN4 variants.

View Article and Find Full Text PDF

Plants colonization accelerates galena oxidation, mineralogical transformation, and microbial community reshaping under the soil phytoremediation processes.

Environ Res

December 2024

College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China. Electronic address:

The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied.

View Article and Find Full Text PDF

Vegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.

View Article and Find Full Text PDF

Considering the increase in demand for rare earth elements (REEs) and their accumulation in soil ecosystems, it is crucial to understand their toxicity. However, the impact of lanthanum, yttrium and cerium oxides (LaO, YO and CeO, respectively) on soil organisms remains insufficiently studied. This study aims to unravel the effects of LaO, YO and CeO nanoparticles (NPs) and their corresponding bulk forms (0, 156, 313, 625, 1250 and 2500 mg/kg) on the terrestrial species Enchytraeus crypticus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!