In this study, the production and optimization of extracellular lipase from Kluyveromyces marxianus IFO 0288 was investigated by using optimized nutritional and cultural conditions in a yeast medium containing glucose as the carbon source in fully aerobic batch fermentation (150 rpm). The influence of four fermentation parameters (type of lipidic source, initial culture pH, temperature, and length of fermentation) on growth and lipase production was investigated and evaluated using the conventional "one variable at a time" approach and response surface methodology. An 18-fold increase in lipase production during 65 h of fermentation was obtained with optimized nutritional (0.5 % olive oil) and cultivation (pH 6.5, 35 °C) conditions by employing the conventional optimization method. By applying the response surface methodology technique the initial pH value of 6.4 and temperature of 32.5 °C were identified as optimal and led to further improvements (up to 18-fold) of extracellular lipase production. The results provide, for the first time, evidence that K. marxianus has the potential to be used as an efficient producer of extracellular lipase with prospective application in a variety of industrial and biotechnological areas.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-012-9808-3DOI Listing

Publication Analysis

Top Keywords

extracellular lipase
16
lipase production
12
lipase kluyveromyces
8
kluyveromyces marxianus
8
marxianus ifo
8
ifo 0288
8
optimized nutritional
8
response surface
8
surface methodology
8
lipase
6

Similar Publications

Response Surface Methodology for Optimization of Media Components for Production of Lipase from KUBT4.

Arch Razi Inst

June 2024

Department of Biotechnology and Microbiology, Karnatak University, Dharwad (Karnataka, India).

Lipases are triacylglycerol hydrolases with various potential applications because of their different physical properties. Most lipase producers are extracellular in nature and are created using solid-state fermentation and submerged fermentation methods. The fungal, mycelial, and yeast lipases are produced using various solid substrates through the solid-state fermentation method.

View Article and Find Full Text PDF

Background/objectives: Low fasting blood lysosomal acid lipase (LAL) activity is associated with the pathogenesis of metabolic hepatic steatosis. We measured LAL activity in blood and plasma before and after an oral fat tolerance test (OFTT) in patients with metabolic-dysfunction-associated steatotic liver disease (MASLD).

Methods: Twenty-six controls and seventeen patients with MASLD but without diabetes were genotyped for the patatin-like phospholipase 3 (PNPLA3) rs738409 variant by RT-PCR and subjected to an OFTT, measuring LAL activity in blood and plasma with a fluorimetric method.

View Article and Find Full Text PDF

Characterization of Crude Oil Degrading Marine Bacterium .

Indian J Microbiol

December 2024

Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu India.

The spillage of petroleum hydrocarbons, one of the most versatile energy resources, leads to disastrous environmental pollution. The present study aims to degrade oil using enzymes from bacterial strains. A total of 39 bacteria were isolated from six different soil samples collected from Ullal Beach, Mangalore, Karnataka, located at 12°52'N latitude and 74°49'E longitude, India.

View Article and Find Full Text PDF

Bacterial lipases are versatile extracellular enzymes with a catalytic triad at the active site and a flexible 'lid' that modulates catalytic accessibility. We combined computational modeling with preliminary in vitro testing to assess the structural stability and activity of the Pseudomonas aeruginosa PAO1 lipase (PAL). We evaluated several systems consisting of the native and mutant forms of the lipase in n-hexane using molecular dynamics simulations.

View Article and Find Full Text PDF

Extracellular lipase production from Bacillus cereus by using agro-industrial waste.

Biol Futur

November 2024

Department of Zoology, Applied Molecular Biology and Biomedicine Lab, University of Narowal, Narowal, Pakistan.

Lipases are crucial biocatalysts in various industrial applications, and there is considerable interest in developing sustainable methods for their synthesis. This study focuses on the isolation, screening, and comparison of Bacillus cereus strains to produce extracellular lipases utilizing agro-industrial waste through solid-state fermentation. The results indicate that B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!