Prior exposure of innate immune cells to lipopolysaccharide (LPS) has caused them to be refractory to further endotoxin stimulation, also termed endotoxin tolerance (ET). Bacterial LPS signals through Toll-like receptor (TLR) 4, which was thought to enable the innate immune system to deal with invasive pathogens and to restrain systemic inflammation efficiently. We established a robust model of ET and determined the level of TNF-α and IL-6 in cultured human monocytes. Then, microarray assay was applied to assess gene expression in this model. The results showed that 356 non-tolerizable genes were differentially expressed at a high level in tolerant monocytes. The genes selected were classified into several categories based on gene ontology (GO) and KEGG pathway database. And then literature annotations, protein-protein interaction (PPI) network, and functional consistency were applied to analyze the non-tolerizable genes. Finally, the microarray results were verified by quantitative real-time PCR of seven representative genes, including the two candidate genes, Spry2 and Smurf2, which were supposed to play a critical role in TLRs-induced inflammation based on literature retrieval. Our results would provide useful information for further analysis of regulating TLRs-induced inflammation, and would facilitate the study of associated mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10753-012-9511-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!