Plant available nitrogen, belowground (root) biomass, soil nitrogen (N) mineralization and microbial biomass N (MBN) were studied for 12 years at the interval of 2 years (0, 2, 4, 6, 8, 10 and 12 years) and mine dump stability at the intervals of 6 years (0, 6 and 12 years) after re-vegetation on coal mine spoil site. Plant available nitrogen in revegetated mine spoil ranged from 4.51 to 6.59 μg g(-1), net N-mineralization from 1.87 to 13.85 μg g(-1) month(-1), MBN from 10 to 22.63 μg g(-1), and root biomass from 28 to 566 g(-2). Mining activity has caused a change in soil characteristics including plant available nutrients like nitrate-N, ammonium-N and phosphate-P by 70, 67, and 76 %, respectively, N-mineralization by 93 %, root biomass values by 97 % and MBN values by 91 % compared to forest ecosystems. Revegetation of mine spoil produced increase in root biomass values by 1.3, 7.6 and 17.2 times, mineral N values by 1.22, 1.43 and 1.79 times, N-mineralization values by 1.8, 5.2 and 12.6 times and MBN values by 1.6, 2.0, and 3.4 times in 2, 6 and 12 years, respectively. Below ground biomass was highly co-related with microbial biomass and plant available nutrients. N-mineralization, plant available nutrients and the clay content were positively correlated with age of revegetation (P < 0.01). From the numerical modelling it was analyzed that revegetation increased the dump slope stability with a factor of safety of 1.7 and 2.1 after 6 and 12 years of plantation on dump slope, respectively, while it was 1.2 before revegetation. Thus, long term revegetation was found to have direct impact on dump stability and indirect impact on soil fertility status in mine spoil, where plant biomass and microbial biomass provide major contributions in ecological redevelopment of the mine spoil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-012-9908-4DOI Listing

Publication Analysis

Top Keywords

mine spoil
16
root biomass
16
plant nutrients
12
dump stability
8
coal mine
8
plant nitrogen
8
microbial biomass
8
years 12 years
8
biomass values
8
mbn values
8

Similar Publications

Introduction: Revegetation of barren substrates is often determined by the composition and distance of the nearest plant community, serving as a source of colonizing propagules. Whether such dispersal effect can be observed during the development of soil microbial communities, is not clear. In this study, we aimed to elucidate which factors structure plant and soil bacterial and fungal communities during primary succession on a limestone quarry spoil heap, focusing on the effect of distance to the adjoining xerophilous grassland.

View Article and Find Full Text PDF

Vegetation characteristics are an important proxy to measure the outcome of ecological restoration and monitor vegetation changes. Similarly, the classification of remotely sensed images is a prerequisite for many field ecological studies. We have a limited understanding of how the remote sensing approach can be utilized to classify spontaneous vegetation in post-industrial spoil heaps that dominate urban areas.

View Article and Find Full Text PDF

Mycorrhizae in mine wasteland reclamation.

Heliyon

July 2024

Copperbelt University, School of Mathematics and Natural Sciences, Department of Biological Sciences, P.O BOX 21692, Kitwe, Zambia.

Mycorrhizae are found on about 70-80 % of the roots of all plant species; ectomycorrhizae (ECM) are mostly found on woody plants and gymnosperms, whereas arbuscular mycorrhizal fungi (AMF) are found on 80-90 % of all plant species. In abandoned mining sites, woody plants dominate, while non-woody species remain scarce. However, this pattern depends on the specific mine site and its ecological context.

View Article and Find Full Text PDF

A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps.

Chemosphere

September 2024

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India. Electronic address:

Extraction of coal through opencast mining leads to the buildup of heaps of overburden (OB) material, which poses a significant risk to production safety and environmental stability. A systematic bibliometric analysis to identify research trends and gaps, and evaluate the impact of studies and authors in the field related to coal OB phytostabilization was conducted. Key issues associated with coal extraction include land degradation, surface and groundwater contamination, slope instability, erosion and biodiversity loss.

View Article and Find Full Text PDF

Analysis of effects and factors linked to soil microbial populations and nitrogen cycling under long-term biosolids application.

Sci Total Environ

July 2024

Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, 6001 West Pershing Road, Cicero, IL 60804, USA.

Information about impacts of long-term biosolids application on soil microbial populations and functional groups and N cycling is important for evaluating soil health and agroecosystem sustainability under long-term biosolids application. Mine spoil plots received annual biosolids application from 1973 to 2010 at low (16.8 Mg ha yr), medium (33.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!