Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury.

Acta Pharmacol Sin

School of Chinese Medicine, Research Centre of Heart, Brain, Hormone & Healthy Aging, The University of Hong Kong, Hong Kong SAR, China.

Published: January 2013

Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086503PMC
http://dx.doi.org/10.1038/aps.2012.82DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia-reperfusion
20
ischemia-reperfusion injury
20
therapeutic strategy
12
reactive nitrogen
8
nitrogen species
8
ischemic stroke
8
free radicals
8
nitric oxide
8
oxide peroxynitrite
8
peroxynitrite onoo-
8

Similar Publications

Mogroside V ameliorates astrocyte inflammation induced by cerebral ischemia through suppressing TLR4/TRADD pathway.

Int Immunopharmacol

January 2025

Medical College of Guangxi University, Guangxi University, Nanning 530004, China; Fujian Maternity and Child Health Hospital, Fuzhou, 350001, China; Stem Cell Therapy Research Center, Fuzhou 350001, China.. Electronic address:

Inflammation and oxidative stress are pivotal factors in the onset and progression of secondary injury following cerebral ischemia-reperfusion (I/R). Mogroside V (MV), a primary active compound of Siraitia grosvenorii, exhibits significant anti-inflammatory and antioxidant properties. However, its specific effects in cerebral ischemia remain unclear.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.

View Article and Find Full Text PDF

Synthetic Bilirubin-Based Nanomedicine Protects Against Renal Ischemia/Reperfusion Injury Through Antioxidant and Immune-Modulating Activity.

Adv Healthc Mater

January 2025

Department of Biological Sciences, KAIST Institute for the BioCentury, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.

Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

The mitochondria as a potential therapeutic target in cerebral I/R injury.

Front Neurosci

January 2025

Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.

Ischemic stroke is a major cause of mortality and disability worldwide. Among patients with ischemic stroke, the primary treatment goal is to reduce acute cerebral ischemic injury and limit the infarct size in a timely manner by ensuring effective cerebral reperfusion through the administration of either intravenous thrombolysis or endovascular therapy. However, reperfusion can induce neuronal death, known as cerebral reperfusion injury, for which effective therapies are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!