Differential susceptibility of human primary aortic and coronary artery vascular cells to RNA interference.

Biochem Biophys Res Commun

Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Published: August 2012

Background: RNAi technology is a promising tool for gene therapy of vascular disease. However, the biological heterogeneity between endothelial (EC) and vascular smooth muscle cells (SMC) and within different vascular beds make them differentially susceptible to siRNA. This is further complicated by the task of choosing the right transfection reagent that leads to consistent gene silencing across all cell types with minimal toxicity. The goal of this study was to investigate the intrinsic RNAi susceptibility of primary human aortic and coronary artery endothelial and vascular smooth muscle cells (AoEC, CoEC, AoSMC and CoSMC) using adherent cell cytometry.

Methods: Cells were seeded at a density of 5000cells/well of a 96well plate. Twenty four hours later cells were transfected with either non-targeting unlabeled control siRNA (50nM), or non-targeting red fluorescence labeled siRNA (siGLO Red, 5 or 50nM) using no transfection reagent, HiPerFect or Lipofectamine RNAiMAX. Hoechst nuclei stain was used to label cells for counting. For data analysis an adherent cell cytometer, Celigo was used.

Results: Red fluorescence counts were normalized to the cell count. EC displayed a higher susceptibility towards siRNA delivery than SMC from the corresponding artery. CoSMC were more susceptible than AoSMC. In all cell types RNAiMAX was more potent compared to HiPerFect or no transfection reagent. However, after 24h, RNAiMAX led to a significant cell loss in both AoEC and CoEC. None of the other transfection conditions led to a significant cell loss.

Conclusion: This study confirms our prior observation that EC are more susceptible to siRNA than SMC based on intracellular siRNA delivery. RNAiMax treatment led to significant cell loss in AoEC and CoEC, but not in the SMC populations. Additionally, this study is the first to demonstrate that coronary SMC are more susceptible to siRNA than aortic SMC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430013PMC
http://dx.doi.org/10.1016/j.bbrc.2012.07.078DOI Listing

Publication Analysis

Top Keywords

susceptible sirna
12
transfection reagent
12
aoec coec
12
led cell
12
aortic coronary
8
coronary artery
8
endothelial vascular
8
vascular smooth
8
smooth muscle
8
muscle cells
8

Similar Publications

Knockdown of RFC3 enhances the sensitivity of colon cancer cells to oxaliplatin by inducing ferroptosis.

Fundam Clin Pharmacol

February 2025

Department Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an People Hospital, Zhejiang, China.

Background: The development of resistance to oxaliplatin is a multifaceted process, often involving modifications in drug transport, DNA repair mechanisms, and the ability of cells to evade drug-induced apoptosis.

Objective: To evaluate whether knocking down RFC3 promotes the sensitivity of colorectal cancer (CRC) cells to oxaliplatin, potentially offering a new approach to combat drug resistance.

Methods: siRNA-mediated knockdown of RFC3 was employed in colorectal cancer cell lines to assess the impact on oxaliplatin responsiveness.

View Article and Find Full Text PDF

DNA methylation modifications are an important mechanism affecting the process of atherosclerosis (AS). Previous studies have shown that Galectin-8 (GAL8) DNA methylation level is associated with sudden death of coronary heart disease or acute events of coronary heart disease. However, the mechanism of GAL8 DNA methylation and gene expression in AS has not been elucidated, prompting us to carry out further research on it.

View Article and Find Full Text PDF

BLOC1S1 Control of Vacuolar Organelle Fidelity Modulates Murine T2 Cell Immunity and Allergy Susceptibility.

Allergy

December 2024

Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, Maryland, USA.

Background: The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4 T cells may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) has been a clinical challenge due to its high recurrence and metastasis rates. Chemotherapy remains the primary treatment for TNBC after surgery ablation, but it lacks targeted specificity and causes side effects in normal tissues. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is significantly expressed in TNBC cells, and small interference RNA (siRNA) targeting ROR1 can effectively suppress ROR1 gene expression, thereby inhibiting proliferation and metastasis.

View Article and Find Full Text PDF

Ultraviolet B (UVB) radiation is a major contributor to skin photoaging. Although mainly absorbed by the epidermis, UVB photons managing to penetrate the upper dermis affect human dermal fibroblasts (HDFs), leading, among others, to the accumulation of senescent cells. In vitro studies have shown that repeated exposures to subcytotoxic UVB radiation doses provoke HDFs' premature senescence shortly after the end of the treatment period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!