Increased secretion of insulin and proliferation of islet β-cells in rats with mesenteric lymph duct ligation.

Biochem Biophys Res Commun

Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan.

Published: August 2012

Background & Aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet β-cells in rats.

Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of β-cells was assessed immunohistochemically using antibodies against insulin and Ki-67.

Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p<0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p<0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p<0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p<0.05) and 120 min (2.5-fold; p<0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p<0.05). Immunohistochemistry showed that the ratios of β-cell area/acinar cell area and β-cell area/islet area, and also β-cell proliferation, were significantly higher in the ligation group than in the sham group (p<0.05, p<0.01 and p<0.01, respectively). The insulin content per unit wet weight of pancreas was also significantly increased in the ligation group (p<0.05).

Conclusions: In rats with ligation of the mesenteric lymph duct, insulin secretion during the OGTT or IVGTT was higher, and the insulin content and β-cell proliferation in the pancreas were also increased. Our data show that mesenteric lymph duct flow has a role in glucose metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.07.079DOI Listing

Publication Analysis

Top Keywords

mesenteric lymph
12
lymph duct
12
islet β-cells
8
glucose metabolism
8
ligation mesenteric
8
ligation group
8
glucose tolerance
8
tolerance test
8
glucose
6
insulin
5

Similar Publications

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Mycophenolate mofetil: an update on its mechanism of action and effect on lymphoid tissue.

Front Immunol

January 2025

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.

Introduction: Mycophenolate mofetil (MMF) is an immunosuppressive drug administered in the management of both autoimmune diseases and organ transplantation. The main aims of the study were: (a) to obtain information regarding the safety of using MMF in respect of its effect on normal T and B cells in lymphoid tissues; (b) to investigate whether the generation of inducible Foxp3-expressing regulatory T cells (Treg) might constitute additional mechanisms underlying the immunosuppressive properties of MMF.

Methods: The effect of MMF ( studies) and its active metabolite, mycophenolic acid, ( studies) on murine CD4 and CD8 T cells as well as B cells was determined, regarding: (a) absolute count, proliferation and apoptosis of these cells ( studies); (b) absolute count of these cells in the head and neck lymph nodes, mesenteric lymph nodes and the spleen ( studies).

View Article and Find Full Text PDF

Histoplasmosis is a rarely reported clinical disease of equids in North America and is historically attributed to Histoplasma capsulatum var. capsulatum. This report details a case of intestinal histoplasmosis with lymphadenitis in an American Mammoth Jackstock donkey from Mississippi.

View Article and Find Full Text PDF

Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.

View Article and Find Full Text PDF

A developed TaqMan probe-based qPCR was used to quantify the distribution of AMDV in various tissues of infected mink and its prevalence in northern China.

Front Vet Sci

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.

Aleutian mink disease (mink plasmacytosis) is a severe immune complex-mediated condition caused by the Aleutian Mink Disease Virus (AMDV), the most significant pathogen affecting mink health in the industry. Several studies have shown that AMDV epidemics can result in millions to tens of millions of dollars in economic losses worldwide each year. In this study, we developed a TaqMan probe-based real-time PCR technology (TaqMan-qPCR) for the specific, sensitive, and reproducible detection and quantification of AMDV in mink tissues by the VP2 gene, achieving detection limits as low as 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!