Background: It has been proved that pre-treatment with leonurine could protect brain tissue against ischemic injury by exerting antioxidant effects and regulating mitochondrial function. Whether this protective effect applies to acute phase after cerebral ischemia, we therefore investigate the potential neuroprotective role of leonurine and the underlying mechanisms in cerebral ischemia.

Methods: Focal cerebral ischemia was induced in adult male Sprague-Dawley rats by permanent middle cerebral artery occlusion (MCAO). Leonurine was administered intraperitoneally at 7.5 or 15 mg/kg/d at 2h after surgery, then once daily thereafter. Neurological deficit, brain water content, and infarct volume were measured at 24h, 72 h, and 7d after stroke. Superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content were also measured by spectrophotometer to evaluate oxidative reactions, and the expression of uncoupling protein 4 (UCP4), Bcl-2, and Bax were detected by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemical staining (IHC), and western blot, while the ultrastructure of the mitochondria were observed under transmission electron microscope.

Results: Leonurine significantly alleviated neurological deficit, decreased brain water content and infarct volume after ischemic stroke, which was accompanied by decreased levels of MDA and Bax, increased activities of SOD, CAT, UCP4, and Bcl-2, and restored ultrastructure of mitochondria.

Conclusions: The results showed that leonurine protected brain injury by increased activities of UCP4, SOD, CAT and Bcl-2, decreased levels of MDA and Bax, and ameliorated ultrastructure of mitochondria in experimental stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2012.07.028DOI Listing

Publication Analysis

Top Keywords

increased activities
12
sod cat
12
decreased levels
12
levels mda
12
mda bax
12
ultrastructure mitochondria
12
brain injury
8
injury increased
8
activities ucp4
8
ucp4 sod
8

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.

Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.

View Article and Find Full Text PDF

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!