Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Football turf is increasingly used in European soccer competition. Little is known on the rotational torque that players experience on these fields. High rotational torques between the shoe outsole and the sports surface has been correlated with torsional injuries of the lower limb and knee.
Purpose: To evaluate the effect of six parameters that could influence the rotational torque between the shoe outsole and the latest generation football turf.
Study Design: Controlled laboratory study.
Methods: A testing apparatus was constructed to measure the peak torque generated during a controlled rotation of the foot. Six parameters that could potentially influence the frictional forces, were considered: (1) the sports surface, (2) the shoe outsole cleat design, (3) the weather conditions, (4) the weight, (5) the presence of an impact and (6) the direction of rotation.
Results: The football turf without infill showed significantly lower frictional torques than natural grass whereas a football turf with sand/rubber infill had significantly higher torques. Blades were associated with significantly higher torques than studs on natural grass and on one football turf with sand/rubber infill. Dry weather was associated with higher torques only for the football turf without infill. The torque increased linearly and significantly with an increasing vertical load. The rotational torque increased significantly following an impact. Torques on external rotational movements were significantly higher with blades.
Conclusions: Important differences in rotational torques are found and could be seen as potential risk factors for torsional injuries of the lower limb.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/bjsports-2012-090938 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!