Early growth response 2 (Egr2) is a zinc finger transcription factor that acts as an important modulator of various physiological processes. In this study, we show that Egr2 negatively regulates receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. The overexpression of Egr2 in bone marrow-derived macrophages (BMMs) suppresses the formation of multinuclear osteoclasts and the expression of osteoclastogenic markers, including nuclear factor of activated T cells c1 (NFATc1). On the other hand, Egr2 overexpression does not impact the phagocytic activity of osteoclast precursors or the expression of macrophage-specific markers in the presence of the osteoclastogenic stimuli, RANKL and M-CSF. We further demonstrate that Egr2 induces the expression of the inhibitors of differentiation/DNA binding (Ids) helix-loop-helix (HLH) transcription factors, which are important repressors in RANKL-mediated osteoclastogenesis. Egr2 transactivates the Id2 promoter and increases its recruitment to the Id2 promoter region. In addition, Egr2-dependent induction of Id2 promoter activity, and its binding to the Id2 promoter is abrogated by the overexpression of the Egr2 repressor, NGFI-A binding protein 2 (Nab2). Accordingly, coexpression with Nab2 restores Egr2-mediated suppression of osteoclast differentiation. Furthermore, knockdown of Egr2 using shRNA enhances osteoclastogenesis and decreases Id2 gene expression. Ectopic expression of Id2 reverses the phenotype mediated by Egr2 silencing. Taken together, our results identify Egr2 as an important modulator of RANKL-induced osteoclast differentiation and provide the link between RANKL, Egr2 and Id proteins in osteoclast-lineage cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2012.07.015DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
16
id2 promoter
16
egr2
11
early growth
8
growth response
8
rankl-induced osteoclast
8
overexpression egr2
8
id2
6
osteoclast
5
expression
5

Similar Publications

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.

View Article and Find Full Text PDF

Bioactive Compounds from Propolis on Bone Homeostasis: A Narrative Review.

Antioxidants (Basel)

January 2025

Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil.

This narrative review explores the potential effects of Propolis and its bioactive compounds on bone health. Propolis, a resinous product collected by bees, is renowned for its antimicrobial, anti-inflammatory, and antioxidant properties. Recent research emphasizes its positive role in osteogenesis, primarily through the modulation of osteoclast and osteoblast activity via molecular pathways.

View Article and Find Full Text PDF

Role of CXCL10 released from osteocytes in response to TNF-α stimulation on osteoclasts.

Sci Rep

January 2025

Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.

Tumor necrosis factor-alpha (TNF-α) is a significant cytokine that regulates bone resorption under inflammatory conditions. However, its mechanism of action in osteocytes remains unclear. In this study, highly purified osteocytes were isolated from dentin matrix protein 1 (DMP1)-Topaz mice using cell sorter.

View Article and Find Full Text PDF

Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling.

Chin J Nat Med

January 2025

The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China. Electronic address:

Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!