Spatial arrangement of rhodopsin in retinal rod outer segment membranes studied by spin-labeling and pulsed electron double resonance.

Biochem Biophys Res Commun

Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

Published: August 2012

We have determined the spatial arrangement of rhodopsin in the retinal rod outer segment (ROS) membrane by measuring the distances between rhodopsin molecules in which native cysteines were spin-labeled at ~1.0 mol/mol rhodopsin. The echo modulation decay of pulsed electron double resonance (PELDOR) from spin-labeled ROS curved slightly with strong background decay. This indicated that the rhodopsin was densely packed in the retina and that the rhodopsin molecules were not aligned well. The curve was simulated by a model in which rhodopsin is distributed randomly as monomers in a planar membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.07.040DOI Listing

Publication Analysis

Top Keywords

spatial arrangement
8
arrangement rhodopsin
8
rhodopsin retinal
8
retinal rod
8
rod outer
8
outer segment
8
pulsed electron
8
electron double
8
double resonance
8
rhodopsin molecules
8

Similar Publications

3D Femtosecond Laser Beam Deflection for High-Precision Fabrication and Modulation of Individual Voxelated PCM Meta-Atoms.

Adv Sci (Weinh)

January 2025

Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Optical metasurfaces have found widespread applications in the field of optoelectronic devices. However, achieving dynamic and flexible control over metasurface functionalities, while also developing simplified fabrication methods for metasurfaces, continues to pose a significant challenge. Here, the study introduces a PCM-only metasurface that exclusively consists of voxel units crafted from different phases of phase-change materials.

View Article and Find Full Text PDF

Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review.

Biochim Biophys Acta Rev Cancer

January 2025

State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China. Electronic address:

Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC.

View Article and Find Full Text PDF

Experimental arrangement to study the impact of atmospheric turbulence on user-defined beams.

Rev Sci Instrum

January 2025

Applied and Adaptive Optics Laboratory, Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala, India.

In the present work, we propose an experimental setup to investigate the effect of atmospheric turbulence on user-defined beams. The user-defined beams were formed by writing reconfigurable patterns on a spatial light modulator, allowing the impact of atmospheric turbulence to be investigated simultaneously and in real time. The programmable controllability provides several flexibilities to the system, such as the ability to create different beam types simultaneously, control the separation between different beams, compensate for aberrations, and easily switch between different beam types.

View Article and Find Full Text PDF

Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.

View Article and Find Full Text PDF

This study employed a hydrothermal method to coat CuS onto PbS quantum dots loaded with ZnO, resulting in a core-shell-structured (PbS/ZnO)@CuS hetero-structured photocatalyst. The sulfide coating enhanced the photocatalyst's absorption in the near-infrared to visible light range and effectively reduced electron-hole (h) pair recombination during photocatalytic processes. Electron microscopy analysis confirmed the successful synthesis of this core-shell structure using polyvinylpyrrolidone (PVP); however, the spatial hindrance effect of PVP led to a disordered arrangement of the CuS lattice, facilitating electron-hole recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!