Botulinum neurotoxins (BoNTs) comprise a family of neurotoxic proteins synthesized by anaerobic bacteria of the genus Clostridium. Each neurotoxin consists of two polypeptide chains: a 100kDa heavy chain, responsible for binding and internalization into the nerve terminal of cholinergic motoneurons and a 50kDa light chain that mediates cleavage of specific synaptic proteins in the host nerve terminal. Exposure to BoNT leads to cessation of voltage- and Ca(2+)-dependent acetylcholine (ACh) release, resulting in flaccid paralysis which may be protracted and potentially fatal. There are no approved therapies for BoNT intoxication once symptoms appear, and specific inhibitors of the light chain developed to date have not been able to reverse the consequences of BoNT intoxication. An alternative approach for treatment of botulism is to focus on compounds that act by enhancing ACh release. To this end, we examined the action of the K(+) channel blocker 3,4-diaminopyridine (3,4-DAP) in isolated mouse hemidiaphragm muscles intoxicated with 5pM BoNT/A. 3,4-DAP restored tension within 1-3min of application, and was effective even in totally paralyzed muscle. The Ca(2+) channel activator (R)-roscovitine (Ros) potentiated the action of 3,4-DAP, allowing for use of lower concentrations of the K(+) channel blocker. In the absence of 3,4-DAP, Ros was unable to augment tension in BoNT/A-intoxicated muscle. This is the first report demonstrating the efficacy of the combination of 3,4-DAP and Ros for the potential treatment of BoNT/A-mediated muscle paralysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2012.07.015DOI Listing

Publication Analysis

Top Keywords

muscle paralysis
8
nerve terminal
8
light chain
8
ach release
8
bont intoxication
8
channel blocker
8
34-dap ros
8
34-dap
5
reversal bont/a-mediated
4
bont/a-mediated inhibition
4

Similar Publications

A fatal case of enterovirus A71-induced meningoencephalitis following allogenic hematopoietic stem cell transplantation.

J Infect Chemother

January 2025

Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Enterovirus A71 (EV-A71) is a major pathogen responsible for hand, foot, and mouth disease (HFMD) in infants and children. EV-A71 infection represents an epidemic in the Asia-Pacific region, and can cause serious central nervous system (CNS) infections in immunocompromised patients that can result in paralysis, disability, or death. There have been few reports in the literature concerning EV-A71 CNS infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adult patients.

View Article and Find Full Text PDF

Introduction: Guillain-Barré syndrome (GBS) is an inflammatory disorder of the peripheral nervous system, causing acute flaccid paralysis. There have been occasional reports linking Hepatitis A virus (HAV) to GBS. Here we aimed to evaluate the current literature on the association between GBS and HAV, exploring potential mechanisms and clinical implications.

View Article and Find Full Text PDF

This review explores the therapeutic potential of the stable gastric pentadecapeptide BPC 157 in addressing electrolyte imbalances, specifically hyperkalemia, hypokalemia, hypermagnesemia, and hyperlithemia. In hyperkalemia, BPC 157 demonstrated a comprehensive counteractive effect against KCl overdose (intraperitoneally, intragastrically, and in vitro), effectively mitigating symptoms such as muscular weakness, hypertension, sphincter dysfunction, arrhythmias, and lethality. It also counteracted the adverse effects of succinylcholine and magnesium overdose, including systemic muscle paralysis, arrhythmias, and hyperkalemia.

View Article and Find Full Text PDF

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

We compared the enzymatic, coagulant, and neuromuscular activities of two variants (yellow-CDRy and white-CDRw) of venom with a sample of (CDT) venom and examined their neutralization by antivenom against CDT venom. The venoms were screened for enzymatic and coagulant activities using standard assays, and electrophoretic profiles were compared by SDS-PAGE. Neutralization was assessed by preincubating venoms with crotalic antivenom and assaying the residual activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!