scotch tape (sco) is a zebrafish cardiac mutant initially proposed to exhibit a reduced amount of cardiac jelly, the extracellular matrix between the myocardial and endocardial layers. We analyzed sco(te382) mutant hearts in detail using both selective plane illumination microscopy (SPIM) and transmission electron microscopy (TEM), and observed a fascinating endocardial defect. Time-lapse SPIM imaging of wild-type and mutant embryos revealed significant and dynamic gaps between endocardial cells during development. Although these gaps close in wild-type animals, they fail to close in the mutants, ultimately leading to a near complete absence of endocardial cells in the atrial chamber by the heart looping stage. TEM analyses confirm the presence of gaps between endocardial cells in sco mutants, allowing the apparent leakage of cardiac jelly into the lumen. High-resolution mapping places the sco(te382) mutation within the fbn2b locus, which encodes the extracellular matrix protein Fibrillin 2b (OMIM ID: 121050). Complementation and further phenotypic analyses confirm that sco is allelic to puff daddy(gw1) (pfd(gw1)), a null mutant in fbn2b, and that sco(te382) is a hypomorphic allele of fbn2b. fbn2b belongs to a family of genes responsible for the assembly of microfibrils throughout development, and is essential for microfibril structural integrity. In sco(te382) mutants, Fbn2b is disabled by a missense mutation in a highly conserved cbEGF domain, which likely interferes with protein folding. Integrating data obtained from microscopy and molecular biology, we posit that this mutation impacts the rigidity of Fbn2b, imparting a structural defect that weakens endocardial adhesion thereby resulting in perforated endocardium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2012.07.015 | DOI Listing |
Dev Growth Differ
January 2025
Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium.
View Article and Find Full Text PDFJ Mol Cell Cardiol
December 2024
Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:
Abnormal valve development is the most common congenital heart malformation. The transcription factor Sox7 plays a critical role in the development of vascular and cardiac septation. However, it remains unclear whether Sox7 is required for heart valve development.
View Article and Find Full Text PDFArkh Patol
December 2024
Cancer Research Institute, branch of Tomsk National Research Medical Center, Tomsk, Russia.
Cardiac myxoma in its morphology is a typical benign tumor, meanwhile, the fact of its localization in the heart chamber, directly in the constant blood flow, largely determines the clinical behavior of this neoplasm, which is often manifested by the development of characteristics that formally determine the aggressive and even malignant nature of the course. Accordingly, the malignancy of cardiac myxoma is determined more by its clinical behavior (recurrence, multifocality of the lesion, the presence of mechanisms of spread similar to metastasis) rather than by its histological picture. In the structure of primary benign tumors of the heart, myxoma occupies a dominant position and its incidence is up to 85%.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium.
View Article and Find Full Text PDFTrends Cell Biol
December 2024
Department of Bioengineering, Imperial College London, London, UK. Electronic address:
The structural development of the heart depends heavily on mechanical forces, and rhythmic contractions generate essential physical stimuli during morphogenesis. Cardiac cells play a critical role in coordinating this process by sensing and responding to these mechanical forces. In vivo, cells experience rhythmic spatial and temporal variations in deformation-related stresses throughout heart development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!