Anterior-posterior (AP) limb patterning is directed by sonic hedgehog (SHH) signaling from the posteriorly located zone of polarizing activity (ZPA). GLI3 and GLI2 are the transcriptional mediators generally utilized in SHH signaling, and each can function as an activator (A) and repressor (R). Although GLI3R has been suggested to be the primary effector of SHH signaling during limb AP patterning, a role for GLI3A or GLI2 has not been fully ruled out, nor has it been determined whether Gli3 plays distinct roles in limb development at different stages. By conditionally removing Gli3 in the limb at multiple different time points, we uncovered four Gli3-mediated functions in limb development that occur at distinct but partially over-lapping time windows: AP patterning of the proximal limb, AP patterning of the distal limb, regulation of digit number and bone differentiation. Furthermore, by removing Gli2 in Gli3 temporal conditional knock-outs, we uncovered an essential role for Gli2 in providing the remaining posterior limb patterning seen in Gli3 single mutants. To test whether GLIAs or GLIRs regulate different aspects of AP limb patterning and/or digit number, we utilized a knock-in allele in which GLI1, which functions solely as an activator, is expressed in place of the bifunctional GLI2 protein. Interestingly, we found that GLIAs contribute to AP patterning specifically in the posterior limb, whereas GLIRs predominantly regulate anterior patterning and digit number. Since GLI3 is a more effective repressor, our results explain why GLI3 is required only for anterior limb patterning and why GLI2 can compensate for GLI3A in posterior limb patterning. Taken together, our data suggest that establishment of a complete range of AP positional identities in the limb requires integration of the spatial distribution, timing, and dosage of GLI2 and GLI3 activators and repressors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432687PMC
http://dx.doi.org/10.1016/j.ydbio.2012.07.017DOI Listing

Publication Analysis

Top Keywords

limb patterning
28
limb
14
shh signaling
12
digit number
12
posterior limb
12
patterning
10
gli3
9
activator repressor
8
gli2
8
limb development
8

Similar Publications

Digital Health Technologies for Optimising Treatment and Rehabilitation Following Surgery: Device-Based Measurement of Sling Posture and Adherence.

Sensors (Basel)

December 2024

Assessment of Movement Behaviours (AMBer), Leicester Lifestyle and Health Research Group, Diabetes Research Centre, University of Leicester, Leicester LE5 4PW, UK.

Background: Following shoulder surgery, controlled and protected mobilisation for an appropriate duration is crucial for appropriate recovery. However, methods for objective assessment of sling wear and use in everyday living are currently lacking. In this pilot study, we aim to determine if a sling-embedded triaxial accelerometer and/or wrist-worn sensor can be used to quantify arm posture during sling wear and adherence to sling wear.

View Article and Find Full Text PDF

The Musculoskeletal Anatomy of the Komodo Dragon's Hindlimb (, Varanidae).

Animals (Basel)

December 2024

Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland.

The Komodo dragon () is the largest extant lizard and is classified as an endangered species. Despite its rarity, anatomical studies on this species remain limited, hindering a comprehensive understanding of its biology and evolutionary traits. This research presents a detailed anatomical and histological examination of the pelvic limb of a female Komodo dragon, providing valuable insights into the musculoskeletal system of this species.

View Article and Find Full Text PDF

Immediate and prolonged effects of different exercise intensities on the regularity of joint and coordinative patterns in runners.

J Biomech

January 2025

Graduate Program of Rehabilitation Sciences, Department of Physical Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil. Electronic address:

Article Synopsis
  • Runners who don't allow enough recovery time after training may be at a higher risk for injuries due to fatigue and altered movement patterns.
  • A study looked at how different running intensities affect lower-limb joint movements and coordination during a single-leg squat in 30 healthy runners.
  • Immediate and longer-term changes showed that coordination patterns became less adaptive (more regular) after moderate and high-intensity runs, but traditional kinematic analysis did not effectively capture these changes.
View Article and Find Full Text PDF

Thermosensory signals may contribute to the sense of body ownership, but their role remains highly debated. We test this assumption within the framework of pathological body ownership, hypothesising that skin temperature and thermoception differ between right-hemisphere stroke patients with and without Disturbed Sensation of Ownership (DSO) for the contralesional plegic upper limb. Patients with DSO exhibit lower basal hand temperatures bilaterally and impaired perception of cold and warm stimuli.

View Article and Find Full Text PDF

Objective: While the association of a syrinx with a tethered spinal cord in the context of VACTERL (vertebral defects [V], imperforate anus or anal atresia [A], cardiac malformations [C], tracheoesophageal defects [T] with or without esophageal atresia [E], renal anomalies [R], and limb defects [L]) association is known, the incidence of idiopathic syrinxes among these patients has not previously been reported. The authors aimed to characterize the incidence of syrinxes and the pattern of congenital anomalies in pediatric patients with VACTERL association, with a specific focus on the presence of idiopathic syrinxes in this population.

Methods: An institutional database was retrospectively queried for all pediatric patients with VACTERL association.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!