Fast screening of rice knockout mutants by multi-channel microchip electrophoresis.

Talanta

Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, South Korea.

Published: August 2012

AI Article Synopsis

  • A multi-channel microchip electrophoresis (MC-ME) system was developed for quick and simultaneous detection of rice knockout mutants in genetically modified rice, using a laser-induced fluorescence detector.
  • The system features three parallel separation channels on a microchip, enabling high-throughput analysis of PCR products from both wild-type and mutant rice samples in just 4 minutes.
  • The MC-ME method is over 15 times faster than traditional gel electrophoresis while maintaining high sensitivity and reproducibility, making it a practical tool for GM rice analysis.

Article Abstract

A multi-channel microchip electrophoresis (MC-ME) system with a laser-induced fluorescence detector was developed for the fast simultaneous detection of rice knockout mutants in genetically modified (GM) rice. In addition, three parallel separation channels were fabricated on a glass microchip to investigate the possibility of high-throughput screening of amplified-polymerase chain reaction products representing wild-type rice and mutants. The MC-ME system was developed to simultaneously record data on all channels using specifically designed electrodes for an even distribution of electric fields, an expanded laser beam for excitation, a 10× objective lens to capture emissions, and a charge coupled device camera for detection. Under a programmed electric field strength and a sieving gel matrix of 0.7% poly(ethylene oxide) (M(r)=8,000,000), T-DNA-inserted rice mutants, two standard wild-type rice lines, and six rice knockout mutants were analyzed within 4 min using three parallel channels on the microchip. Compared to conventional microchip electrophoresis, the MC-ME method is a valid and practical way to effectively analyze multiple samples in parallel for the identification of GM rice without any loss of resolving power or reproducibility. The MC-ME method was more than 15 times faster than traditional slab gel electrophoresis and proved to be a powerful tool for high-throughput screening of GM rice with high sensitivity, efficiency, and reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2012.04.026DOI Listing

Publication Analysis

Top Keywords

rice knockout
12
knockout mutants
12
microchip electrophoresis
12
rice
9
screening rice
8
multi-channel microchip
8
electrophoresis mc-me
8
mc-me system
8
three parallel
8
high-throughput screening
8

Similar Publications

Panicle elongation length (PEL), which determines panicle exsertion, is an important outcrossing-related trait. Mining genes controlling PEL in rice (Oryza sativa L.) has great practical significance in breeding cytoplasmic male sterility (CMS) lines with increased PEL and simplified, high-efficiency seed production.

View Article and Find Full Text PDF

The haploid induction ability analysis of various mutation of OsMATL and OsDMPs in rice.

BMC Biol

January 2025

National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.

Background: The high-frequency induction rate of haploid is crucial for double haploid (DH) breeding. The combination of multiple haploid-induced genes, such as ZmPLA1/MATL/NLD and ZmDMP, can synergistically enhance the haploid induction rate (HIR) in maize. However, the potential synergistic effects between OsMATL and OsDMP genes in rice remain unclear.

View Article and Find Full Text PDF

Rice glycosyltransferase OsDUGT1 is involved in heat stress tolerance by glycosylating flavonoids and regulating flavonoid metabolism.

Front Plant Sci

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.

One significant environmental element influencing the growth and yield of rice ( L.) is high temperature. Nevertheless, the mechanism by which rice responds to high temperature is not fully understood.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!