Fetal welfare during labor and delivery is commonly monitored through the cardiotocogram (CTG), the combined registration of uterus contractions and fetal heart rate (FHR). From the CTG, the fetal oxygen state is estimated as the main indicator of the fetal condition, but this estimate is difficult to make, due to the complex relation between CTG and oxygen state. Mathematical models can be used to assist in the interpretation of the CTG, since they enable quantitative modeling of the flow of events through which uterine contractions affect fetal oxygenation and FHR. We propose a mathematical model to simulate reflex 'late decelerations', i.e. variations in FHR originating from uteroplacental flow reduction during uterine contractions and mediated by the baroreflex and the chemoreflex. Results for the uncompromised fetus show that partial oxygen pressures reduce in relation to the strength and duration of the contraction. Above a certain threshold, hypoxemia will evoke a late deceleration. Results for uteroplacental insufficiency, simulated by reduced uterine blood supply or reduced placental diffusion capacity, demonstrated lower baseline FHR and smaller decelerations during contraction. Reduced uteroplacental blood volume was found to lead to deeper decelerations only. The model response in several nerve blocking simulations was similar to experimental findings by Martin et al. [18], indicating a correct balance between vagal and sympathetic reflex pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.earlhumdev.2012.07.006DOI Listing

Publication Analysis

Top Keywords

mathematical model
8
oxygen state
8
uterine contractions
8
fetal
5
simulation reflex
4
reflex late
4
late decelerations
4
decelerations labor
4
labor mathematical
4
model fetal
4

Similar Publications

Modeling and simulation of distribution and drug resistance of major pathogens in patients with respiratory system infections.

BMC Infect Dis

January 2025

Department of Respiratory Medicine, Anting Hospital of Jiading District, 1060 Hejing Road, Anting Town, Jiading District, Shanghai, 201805, China.

Background: Respiratory tract infections (RTIs) are one of the leading causes of morbidity and mortality worldwide. The increase in antimicrobial resistance in respiratory pathogens poses a major challenge to the effective management of these infections.

Objective: To investigate the distribution of major pathogens of RTIs and their antimicrobial resistance patterns in a tertiary care hospital and to develop a mathematical model to explore the relationship between pathogen distribution and antimicrobial resistance.

View Article and Find Full Text PDF

Background: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR.

Methods: Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not.

View Article and Find Full Text PDF

Background: Interstitial lung abnormalities (ILA) are a proposed imaging concept. Fibrous ILA have a higher risk of progression and death. Clinically, computed tomography (CT) examination is a frequently used and convenient method compared with pulmonary function tests.

View Article and Find Full Text PDF

Background: People with malignancy of undefined primary origin (MUO) have a poor prognosis and may undergo a protracted diagnostic workup causing patient distress and high cancer related costs. Not having a primary diagnosis limits timely site-specific treatment and access to precision medicine. There is a need to improve the diagnostic process, and healthcare delivery and support for these patients.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!