Polymorphic adhesion molecules neurexin and neuroligin (NL) mediate asymmetric trans-synaptic adhesion, which is crucial for synapse development and function. It is not known whether or how individual synapse function is controlled by the interactions between variants and isoforms of these molecules with differing ectodomain regions. At a physiological concentration of Ca(2+), the ectodomain complex of neurexin-1 β isoform (Nrx1β) and NL1 spontaneously assembled into crystals of a lateral sheet-like superstructure topologically compatible with transcellular adhesion. Correlative light-electron microscopy confirmed extracellular sheet formation at the junctions between Nrx1β- and NL1-expressing non-neuronal cells, mimicking the close, parallel synaptic membrane apposition. The same NL1-expressing cells, however, did not form this higher-order architecture with cells expressing the much longer neurexin-1 α isoform, suggesting a functional discrimination mechanism between synaptic contacts made by different isoforms of neurexin variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2012.06.009 | DOI Listing |
Brain functional connectivity patterns exhibit distinctive, individualized characteristics capable of distinguishing one individual from others, like fingerprint. Accurate and reliable depiction of individualized functional connectivity patterns during infancy is crucial for advancing our understanding of individual uniqueness and variability of the intrinsic functional architecture during dynamic early brain development, as well as its role in neurodevelopmental disorders. However, the highly dynamic and rapidly developing nature of the infant brain presents significant challenges in capturing robust and stable functional fingerprint, resulting in low accuracy in individual identification over ages during infancy using functional connectivity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:
Pentraxin-3 (PTX3) is a multifunctional pattern-recognition molecule that is essential for immune defense, pathogen recognition, and complement activation. PTX3 is stored as a monomer in neutrophil granules, and assembles into higher-order oligomers upon immune activation, thereby enhancing its antimicrobial function. The mechanism underlying this assembly remains elusive.
View Article and Find Full Text PDFBioData Min
December 2024
School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada.
Background: Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry and Chemical Biology, Center for Quantitative Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA.
The dynamic organization of chromatin plays an essential role in the regulation of genetic activity, interconverting between open and compact forms at the global level. The mechanisms underlying these large-scale changes remain a topic of widespread interest. The simulations of nucleosome-decorated DNA reported herein reveal profound effects of the nucleosome itself on overall chromatin properties.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2024
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China.
The evolution of photosynthetic reaction centers (RCs) from anoxygenic bacteria to higher-order oxygenic cynobacteria and plants highlights a remarkable journey of structural and functional diversification as an adaptation to environmental conditions. The role of chirality in these centers is important, influencing the arrangement and function of key molecules involved in photosynthesis. Investigating the role of chirality may provide a deeper understanding of photosynthesis and the evolutionary history of life on Earth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!