Albumin-scavenging surfaces decorated with n-alkyl chains represent an established strategy for blood-contacting applications. To evaluate this concept, a set of poly (2-hydroxyethyl methacrylate) (pHEMA) films modified with different amounts of octadecyl isocyanate (C18) was investigated in an in vitro hemocompatibility assay using freshly drawn human whole blood. In addition, the hydrogel materials were thoroughly characterized with respect to changes in wettability and elasticity, which accompanied the gradual chemical modification of pHEMA. An increase of the surface C18 content induced enhanced hydrophobicity and stiffness. Immobilization of C18 chains was found to substantially reduce the coagulation activation and the complement activation by the pHEMA films. Platelet adhesion and degranulation (PF4 release) were similar on the modified and the unmodified pHEMA. Platelet adhesion to pHEMA hydrogels was lower than the polytetrafluoroethylene reference. We conclude that the immobilization of octadecyl chains improved the hemocompatibility of pHEMA materials under conditions that might be encountered in low shear blood flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2012.07.007 | DOI Listing |
Pharmaceutics
January 2025
Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.
: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, People's Republic of China.
Background: Precise intraoperative tumor delineation is essential for successful surgical outcomes. However, conventional methods are often incompetent to provide intraoperative guidance due to lack specificity and sensitivity. Recently fluorescence-guided surgery for tumors to delineate between cancerous and healthy tissues has attracted widespread attention.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
Oxazolidine is a new category of stimuli-chromic compounds that has unique intelligent behaviors such as halochromism, hydrochromism, solvatochromism, and ionochromism, all of which have potential applications for designing and constructing chemosensors by using functionalized-polymer nanocarriers. Here, the poly(MMA--HEMA) based nanoparticles were synthesized by emulsion copolymerizing methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different copolymer compositions. The poly(MMA--HEMA) based nanoparticles were modified physically with tertiary amine-functionalized oxazolidine (as an intelligent pH-responsive organic dye) to prepare halochromic latex nanoparticles.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada. Electronic address:
The objective of this study is to address the unanswered question whether sustained supersaturation generated from amorphous solid dispersions (ASDs) formulated in insoluble hydrogel carriers will result in better bioavailability over that of spring-and-parachute type of dissolution profiles of ASDs formulated in water-soluble carriers. This was achieved by investigating the effects of supersaturation generation rates and doses on the extent of absorption (i.e.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile.
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA--IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA--IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!