Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay, China.

Mar Environ Res

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.

Published: September 2012

Reactive iron (Fe) oxides in marine sediments play a critical role in removal of free sulfide. In this study, 0.5 and 6 N HCl-extractable Fe, acid volatile sulfide (AVS), and pyrite were examined in sediments at three sites of eutrophic Jiaozhou Bay to investigate the interactions of sulfur and Fe and possible influences of eutrophication on free sulfide removal. The results indicate that formation and accumulation of AVS and pyrite are limited by low availability of labile organic matter, despite eutrophication of the bay water. Quick buffering of free sulfide proceeded mainly via consumption of 0.5 N HCl-extractable Fe (labile Fe), however, the consumption did not result in a depletion of the Fe pool. High residual buffering capacity enables a quick removal of free sulfide in porewater, and thereby it is difficult for sulfide to accumulate and to cause detrimental effects on benthic organisms at the present steady state. Significant effects of eutrophication on Fe and sulfur geochemistry is restricted only to the estuarine sediments which were subject to direct wastewater discharges, whereas no such effects were observed in other sediments of the bay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2012.06.010DOI Listing

Publication Analysis

Top Keywords

free sulfide
16
reactive iron
8
buffering capacity
8
jiaozhou bay
8
removal free
8
avs pyrite
8
sulfide
7
sediments
5
iron buffering
4
capacity dissolved
4

Similar Publications

LiZrF protective layer enabled high-voltage LiCoO positive electrode in sulfide all-solid-state batteries.

Nat Commun

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, China.

The application of high-voltage positive electrode materials in sulfide all-solid-state lithium batteries is hindered by the limited oxidation potential of sulfide-based solid-state electrolytes (SSEs). Consequently, surface coating on positive electrode materials is widely applied to alleviate detrimental interfacial reactions. However, most coating layers also react with sulfide-based SSEs, generating electronic conductors and causing gradual interface degradation and capacity fading.

View Article and Find Full Text PDF

In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite.

View Article and Find Full Text PDF

The Laurani high-sulfidation epithermal deposit, located in the northeastern Altiplano of Bolivia, is a representative gold-polymetallic deposit linked to the late Miocene volcanic rocks that were formed approximately at about 7.5 Ma. At Laurani, four mineralization stages are defined.

View Article and Find Full Text PDF

Transition-Metal-Free Thioboration of Terminal Alkynes.

JACS Au

December 2024

Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

We present a new type of elementoboration reaction, the thioboration of terminal alkynes. This method enables highly controllable regio-/stereo-/chemoselective - and -thioboration on demand, affording synthetically versatile and densely functionalized vinyl boron/vinyl sulfide derivatives in a straightforward manner without the need for a transition-metal catalyst.

View Article and Find Full Text PDF

The study aimed to prepare complex gels of sonicated quinoa protein (QP) and polysaccharides, comparing the effects of different protein components and pH on gel properties. FTIR analysis demonstrated that the β-structure in protein at pH 7.0 was enhanced by ultrasonic treatment, which could promote the formation of a gel network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!