Background: Enriching environmental samples to increase the probability of detection has been standard practice throughout the history of microbiology. However, by its very nature, the process of enrichment creates a biased sample that may have unintended consequences for surveillance or resolving a pathogenic outbreak. With the advent of next-generation sequencing and metagenomic approaches, the possibility now exists to quantify enrichment bias at an unprecedented taxonomic breadth.
Findings: We investigated differences in taxonomic profiles of three enriched and unenriched tomato phyllosphere samples taken from three different tomato fields (n = 18). 16S rRNA gene meteganomes were created for each of the 18 samples using 454/Roche's pyrosequencing platform, resulting in a total of 165,259 sequences. Significantly different taxonomic profiles and abundances at a number of taxonomic levels were observed between the two treatments. Although as many as 28 putative Salmonella sequences were detected in enriched samples, there was no significant difference in the abundance of Salmonella between enriched and unenriched treatments.
Conclusions: Our results illustrate that the process of enriching greatly alters the taxonomic profile of an environmental sample beyond that of the target organism. We also found evidence suggesting that enrichment may not increase the probability of detecting a target. In conclusion, our results further emphasize the need to develop metagenomics as a validated culture independent method for pathogen detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441234 | PMC |
http://dx.doi.org/10.1186/1756-0500-5-378 | DOI Listing |
Int J Mol Sci
January 2025
Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.
View Article and Find Full Text PDFJ Infect Dis
January 2025
School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
Background: Inflammation and innate immune activation are associated with chronic HIV infection, despite effective treatment. Although gut microbiota alterations are linked to systemic inflammation, the relationships between the gut microbiome, inflammation and HIV remain unclear.
Methods: The UPBEAT-CAD sub-study, examining cardiovascular disease (CVD) risk in HIV, enrolled participants matched on HIV status and traditional CVD risk factors.
Vet Sci
January 2025
Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy.
Objective: In recent years, the use of zebrafish () as laboratory models has significantly increased. Ensuring their welfare is crucial, with the cognitive bias test emerging as a valuable tool to assess their emotional state. This systematic review examines the application of the cognitive bias test in zebrafish research.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Institute of Learning Sciences and Technologies, National Tsing Hua University, Hsinchu, Taiwan.
Background: Health misinformation undermines responses to health crises, with social media amplifying the issue. Although organizations work to correct misinformation, challenges persist due to reasons such as the difficulty of effectively sharing corrections and information being overwhelming. At the same time, social media offers valuable interactive data, enabling researchers to analyze user engagement with health misinformation corrections and refine content design strategies.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.
Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!