Relationship between the rate of electrochemical formation of mesoporous Si and the crystallographic directions has been studied by local anodization of wafers through a mask having the form of narrow long wedges radiating from the center in all directions ('wagon-wheel' mask). The etching rates were found from the side etching under the thin transparent n-Si mask. On p+-substrates of various orientation diagrams characterizing the distribution of pore formation rates over different directions in the wafer plane were constructed for the first time. The wagon-wheel method was applied to study the current dependence of the anisotropy. It was found that the orientation-related difference between the pore formation rates is 5% to 25%, depending on the crystallographic direction and the etching current density. At a current density of approximately 9 mA/cm2, the etching rates are related as V100:V113:V110:V112:V111 = 1.000:0.900:0.836:0.824:0.750. A general tendency is observed toward weakening of the anisotropy with increasing current. The highest rate always corresponds to the <100 > direction, and the rate ratio between the other directions varies with increasing current, which leads to a change of their sequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488032 | PMC |
http://dx.doi.org/10.1186/1556-276X-7-421 | DOI Listing |
Nanoscale Res Lett
August 2019
Imec, Kapeldreef 75, 3001, Leuven, Belgium.
Wet etching offers an advantage as a soft, damage-less method to remove sacrificial material with close to nanometer precision which has become critical for the fabrication of nanoscale structures. In order to develop such wet etching solutions, screening of etchant properties like selectivity and (an)isotropy has become vital. Since these etchants typically have low etch rates, sensitive test structures are required to evaluate their etching behavior.
View Article and Find Full Text PDFNanoscale Res Lett
July 2012
Department of Solid State Electronics, Ioffe Physical Technical Institute Russian Academy of Sciences, Politekhnicheskaya 26, St, Petersburg, 194021, Russia.
Relationship between the rate of electrochemical formation of mesoporous Si and the crystallographic directions has been studied by local anodization of wafers through a mask having the form of narrow long wedges radiating from the center in all directions ('wagon-wheel' mask). The etching rates were found from the side etching under the thin transparent n-Si mask. On p+-substrates of various orientation diagrams characterizing the distribution of pore formation rates over different directions in the wafer plane were constructed for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!