Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.

J Phys Chem B

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, USA.

Published: August 2012

Onsager's model of the dielectric constant is used to provide a molecular-level picture of how the dielectric constant affects mass and charge transport in organic liquids and organic liquid electrolytes. Specifically, the molecular and system parameters governing transport are the molecular dipole moment μ and the solvent dipole density N. The compensated Arrhenius formalism (CAF) writes the temperature-dependent ionic conductivity or diffusion coefficient as an Arrhenius-like expression that also includes a static dielectric constant (ε(s)) dependence in the exponential prefactor. The temperature dependence of ε(s) and therefore the temperature dependence of the exponential prefactor is due to the quantity N/T, where T is the temperature. Using the procedure described in the CAF, values of the activation energy can be obtained by scaling out the N/T dependence instead of the ε(s) dependence. It has been previously shown that a plot of the prefactors versus ε(s) results in a master curve, and here it is shown that a master curve also results by plotting the prefactors against N/T. Therefore, the CAF can be applied by using temperature-dependent density data instead of temperature-dependent dielectric constant data. This application is demonstrated for diffusion data of n-nitriles, n-thiols, n-acetates, and 2-ketones, as well as conductivity data for dilute tetrabutylammonium triflate-nitrile electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp305112fDOI Listing

Publication Analysis

Top Keywords

dielectric constant
16
molecular system
8
system parameters
8
parameters governing
8
mass charge
8
charge transport
8
εs dependence
8
dependence exponential
8
exponential prefactor
8
temperature dependence
8

Similar Publications

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.

View Article and Find Full Text PDF

Transitions seen in the electric properties of water-absorbable poly(2,5-benzimidazole) (ABPBI) films were confirmed by electric conductivity, dielectric constant, and time-domain nuclear magnetic resonance (NMR) measurements. The electric resistance of the films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in the frequency range of 90 Hz to 8 MHz. The water absorption ratio at equilibrium absorption for the films was 37%, which corresponded to a volume fraction of water of 0.

View Article and Find Full Text PDF

Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities.

View Article and Find Full Text PDF

For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!