Rubidium adsorption on the surface of the topological insulator Bi(2)Se(3) is found to induce a strong downward band bending, leading to the appearance of a quantum-confined two-dimensional electron gas state (2DEG) in the conduction band. The 2DEG shows a strong Rashba-type spin-orbit splitting, and it has previously been pointed out that this has relevance to nanoscale spintronics devices. The adsorption of Rb atoms, on the other hand, renders the surface very reactive, and exposure to oxygen leads to a rapid degrading of the 2DEG. We show that intercalating the Rb atoms, presumably into the van der Waals gaps in the quintuple layer structure of Bi(2)Se(3), drastically reduces the surface reactivity while not affecting the promising electronic structure. The intercalation process is observed above room temperature and accelerated with increasing initial Rb coverage, an effect that is ascribed to the Coulomb interaction between the charged Rb ions. Coulomb repulsion is also thought to be responsible for a uniform distribution of Rb on the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn3021822DOI Listing

Publication Analysis

Top Keywords

robust surface
4
surface doping
4
doping bi2se3
4
bi2se3 rubidium
4
rubidium intercalation
4
intercalation rubidium
4
rubidium adsorption
4
surface
4
adsorption surface
4
surface topological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!