Different phenylenediamines were used to explore anodic oxidation in solution during electrospray ionization (ESI) mass spectrometry analysis. In our experiments, a series of unknown ionic species was detected in the phenylenediamine solutions. Our results propose that reactions of phenylenediamines with species formed by anodic oxidation of typical ESI solvents during the electrospray ionization process such as formaldehyde are producing these peaks. Identification of these compounds inter alia suggests formal alkylation, a reaction not reported so far as a result of electrolytic oxidation in the prospective organic solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1255/ejms.1187 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Chemistry, South China Normal University, Guangzhou 510006, China. Electronic address:
Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).
View Article and Find Full Text PDFWater Res
December 2024
Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:
Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.
View Article and Find Full Text PDFNanotechnology
December 2024
Department of Chemistry, King Faisal University, Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia, Kinga Faisal University, Al-Hasa, Al-Hasa, 31982, SAUDI ARABIA.
This research investigates the eco-friendly production of iron oxide nanoparticles and their combination with carbon to create the FeC-1and FeC-2 NPs, using seedless pods of Acacia nilotica. These pods, rich in tannins and flavonoids, serve as a natural reducing, stabilizing, and carbon source. The study details the synthesis of FeC NPs through a non-toxic, green method and examines the influence of varying concentrations of Acacia nilotica extract (ANE) on the electrochemical characteristics of the resulting n FeC-1and FeC-2 electrodes.
View Article and Find Full Text PDFChemistry
December 2024
Technische Universitat Berlin, Chemistry, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, GERMANY.
Water-assisted electrocatalytic oxidation of alcohols into valuable chemicals is a promising strategy to circumvent the sluggish kinetics of water oxidation, while also reducing cell voltage and improving energy efficiency. Recently, transition metal (TM)-based catalysts have been investigated for anodic alcohol oxidation, but success has been limited due to competition from the oxygen evolution reaction (OER) within the working regime. In this study, NiCo-based Prussian blue analog (PBA) was electrochemically activated at the anodic potential to produce a Co-Ni(O)OH active catalyst with a nanosheet-like architecture.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, P.R. China.
Electrochemical CO capture driven by renewable electricity holds significant potential for efficient decarbonization. However, the widespread adoption of this approach is currently limited by issues such as instability, discontinuity, high energy demand, and challenges in scaling up. In this study, we propose a scalable strategy that addresses these limitations by transforming the conventional single-step electrochemical redox reaction into a stepwise electrochemical-chemical redox process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!