Hydrogel was a commonly used material for scleral buckling in the early 1980s to the mid-1990s. Use of hydrogel ceased due to a high complication rate, including frequent migration. Various symptoms and clinical findings have been reported with hydrogel migration. There have been no published reports of hydrogel migration to the eyelid anterior to the orbital septum with erosion of the orbicularis and bleeding as a presenting symptom. The authors describe a patient with hydrogel migration to the upper eyelid, with symptomology and clinical findings consistent with a malignant eyelid lesion. Excisional biopsy of extraorbital hydrogel is recommended in these cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/IOP.0b013e31825ca8cc | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Transarterial embolization (TAE) is an image-guided, minimally invasive procedure for treating various clinical conditions by delivering embolic agents to occlude diseased arteries. Conventional embolic agents focus on vessel occlusion but can cause unintended long-term inflammation and ischemia in healthy tissues. Next-generation embolic agents must exhibit biocompatibility, biodegradability, and effective drug delivery, yet some degradable microspheres degrade too quickly, leading to the potential migration of fragments into distal blood vessels causing off-target embolization.
View Article and Find Full Text PDFBioact Mater
April 2025
School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, India. Electronic address:
Managing wounds and accompanying consequences like exudation and microbiological infections is challenging in clinical practice. Bioactive compounds from traditional medicinal plants help heal wounds, although their bioavailability is low. This study uses sodium alginate (SA), gelatin (G), and Santalum album oil (SAL) to 3D print a polymeric hydrogel scaffold to circumvent these difficulties.
View Article and Find Full Text PDFSci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Qingdao University, Qingdao 266071, China. Electronic address:
Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!