A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Does retinal vascular geometry vary with cardiac cycle? | LitMetric

Purpose: Changes in retinal vascular parameters have been shown to be associated with systemic vascular diseases. In this study, we assessed the physiologic variations in retinal vascular measurements during the cardiac cycle.

Methods: Fundus images were taken using electrocardiogram-synchronized retinal camera at nine distinct cardiac points from 15 healthy volunteers (135 images). Analyses of retinal vessel geometric measures, including retinal vessel caliber (individual and summary), tortuosity, branching angle, length-diameter ratio (LDR), and optimality deviation, were performed using semiautomated computer software. Repeated-measures ANOVAs were used to obtain the means and to estimate the variation of each cardiac point compared with cardiac point 1.

Results: There was a significant variation of the caliber of the individual arteriolar and venular vessels. However, there was no significant variation found for vessel caliber summary, represented by the central retinal arteriolar equivalent (CRAE) and the central retinal venular equivalent (CRVE). There was also no significant variation found for tortuosity and branching angle, and LDR showed none or very little variations at different cardiac points: variations in caliber ranges between 0 and 4.1%, tortuosity 0 and 1.5%, branching angle 0 and 3.5%, and LDR 0 and 2%; all values for variations, P > 0.1; linear trend, P > 0.5; and nonlinear trend, P > 0.8.

Conclusions: This study showed that there were minimal variations in the CRAE, CRVE, tortuosity, and branching angle that are clinically used for two-dimensional measures of retinal vascular geometry during cardiac cycles. However, there was significant variation in the caliber of the individual vessels over the cardiac cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.11-9326DOI Listing

Publication Analysis

Top Keywords

retinal vascular
16
branching angle
16
caliber individual
12
tortuosity branching
12
retinal
9
vascular geometry
8
cardiac
8
cardiac points
8
retinal vessel
8
vessel caliber
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!