Relationship between chloroplastic H 2O 2 and the salicylic acid response.

Plant Signal Behav

Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan.

Published: August 2012

Reactive oxygen species (ROS) act as signaling molecules for regulating plant responses to abiotic and biotic stress and there exist source- and kind-specific pathways for ROS signaling. Recently, we created a novel system for producing H 2O 2 in Arabidopsis chloroplasts by chemical-dependent thylakoid membrane-bound ascorbate peroxidase (tAPX) silencing using an estrogen-inducible RNAi method. Microarray analysis revealed that the expression of a large set of genes was altered in response to tAPX silencing, some of which are known to be involved in pathogen response/resistance. Furthermore, we found that tAPX silencing enhances the levels of salicylic acid (SA) and the response to SA, a central regulator for biotic stress response. In this addendum, we describe the relationship between chloroplastic H 2O 2 and SA in stress response, and discuss the function of the kind- and source-specific ROS signaling in SA-mediated stress response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474691PMC
http://dx.doi.org/10.4161/psb.20906DOI Listing

Publication Analysis

Top Keywords

ros signaling
12
tapx silencing
12
stress response
12
relationship chloroplastic
8
salicylic acid
8
acid response
8
biotic stress
8
response
6
chloroplastic salicylic
4
response reactive
4

Similar Publications

Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.

View Article and Find Full Text PDF

Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology.

Front Immunol

January 2025

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).

View Article and Find Full Text PDF

Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction.

Front Pharmacol

January 2025

The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.

View Article and Find Full Text PDF

Interplay between energy metabolism and NADPH oxidase-mediated pathophysiology in cardiovascular diseases.

Front Pharmacol

January 2025

Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Sustained production of reactive oxygen species (ROS) and an imbalance in the antioxidant system have been implicated in the development of cardiovascular diseases (CVD), especially when combined with diabetes, hypercholesterolemia, and other metabolic disorders. Among them, NADPH oxidases (NOX), including NOX1-5, are major sources of ROS that mediate redox signaling in both physiological and pathological processes, including fibrosis, hypertrophy, and remodeling. Recent studies have demonstrated that mitochondria produce more proteins and energy in response to adverse stress, corresponding with an increase in superoxide radical anions.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!