Ultra-performance liquid chromatography (UPLC) coupled to mass spectrometry (MS) is a useful tool in the analysis of non-volatile compounds, and the use of a quadrupole-time-of-flight (Q-TOF) mass analyzer allows a high sensitivity and accuracy when acquiring full fragment mode, providing a high assurance of correct identification of unknown compounds. In this work, UPLC-Q-TOF-MS technology has been applied to the analysis of non-volatile migrants from new active packaging materials. The materials tested were based on polypropylene (PP), ethylene-vinyl alcohol copolymer (EVOH), and poly(ethylene terephthalate) (PET). The active packaging materials studied were one PP film containing a natural antioxidant, and two PP/EVOH films, two PET/EVOH films and one coextruded PP/EVOH/PP film containing natural antimicrobials. The chemical structure of several compounds was unequivocally identified. The analysis revealed the migration of some of the active substances used in the manufacture of active packaging, such as caffeine (0.07 ± 0.01 μg/g), carvacrol (0.31 ± 0.03 μg/g) and citral (0.20 ± 0.01 μg/g). Unintentionally added substances were also found, such as citral reaction compounds, or citral impurities present in the raw materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-012-6247-5 | DOI Listing |
Ther Adv Neurol Disord
January 2025
Department of the Second Cadre Ward, General Hospital of Northern Theater Command, No. 83, Culture Road, Shenyang, Liaoning Province 110016, China.
Background: Dementia is a serious adverse event (AE) that requires attention in clinical practice. However, information on drug-induced dementia is limited. The U.
View Article and Find Full Text PDFRSC Adv
January 2025
National and Local Joint Engineering Research Center of Advanced Packaging Material Research and Development Technology, School of Packaging and Materials Engineering, Hunan University of Technology Zhuzhou 412007 Hunan China
To further improve the performance of PA66 and expand its applications, a new strategy was proposed to introduce an alicyclic structure into PA66 chain by the copolymerization method. Initially, 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane (MACM) was reacted with 1,6-adipic acid to form MACM6 salt, and then, it was copolymerized with PA66 salt to synthesize PA66/MACM6 copolymers with alicyclic structures. PA66/MACM6 copolymers exhibited good thermal stabilities, and the presence of alicyclic structure had no significant effect on their thermal stabilities.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Nanotechnology Department, Faculty of Science, Urmia University, Urmia, Iran.
Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China. Electronic address:
Although Tara tannins (TT) have given soy protein isolate (SPI) film antioxidant properties, the mechanical and barrier properties were not significantly improved. In this work, dialdehyde cellulose nanofibers (DACNF) were obtained through oxidation using sodium periodate and incorporated into SPI film with TT to obtain antioxidant and bacteriostatic properties. With increased DACNF content, the anti-swelling, mechanical and barrier properties of SPI film were enhanced due to a double-crosslinked structure based on the covalent and hydrogen bonds formed between DACNF, TT and SPI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!