We investigated how potato exposed to a chemical agent could activate nitric oxide (NO)-dependent events facilitating more potent defense responses to a subsequent pathogen attack. Obtained data revealed that all applied inducers, i.e., β-aminobutyric acid (BABA), γ-aminobutyric acid (GABA), laminarin, or 2,6-dichloroisonicotinic acid (INA), were active stimuli in potentiating NO synthesis in the primed potato. It is assumed, for the mechanism proposed in this paper, that priming involves reversible S-nitrosylated protein (S-nitrosothiols [SNO]) storage as one of the short-term stress imprint components, apart from epigenetic changes sensitized by NO. Based on BABA- and GABA-induced events, it should be stated that a rise in NO generation and coding the NO message in SNO storage at a relatively low threshold together with histone H2B upregulation might create short-term imprint activation, facilitating acquisition of a competence to react faster after challenge inoculation. Laminarin elicited strong NO upregulation with an enhanced SNO pool-altered biochemical imprint in the form of less effective local recall, nevertheless being fully protective in distal responses against P. infestans. In turn, INA showed the most intensified NO generation and abundant formation of SNO, both after the inducer treatment and challenge inoculation abolishing potato resistance against the pathogen. Our results indicate, for the first time, that a precise control of synthesized NO in cooperation with reversible SNO storage and epigenetic modifications might play an important role in integrating and coordinating defense potato responses in the priming phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-02-12-0044-R | DOI Listing |
Sci Adv
January 2025
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
J Mol Med (Berl)
December 2024
Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France.
Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Acad Sci, Šlechtitelů 31, Olomouc 77900, Czech Republic.
Cytosine (DNA) methylation plays important roles in silencing transposable elements, plant development, genomic imprinting, stress responses, and maintenance of genome stability. To better understand the functions of this epigenetic modification, several tools have been developed to manipulate DNA methylation levels. These include mutants of DNA methylation writers and readers, targeted manipulation of locus-specific methylation, and the use of chemical inhibitors.
View Article and Find Full Text PDFOpen Life Sci
November 2024
Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Huan hu xi Road, Hexi District, Tianjin, 300060, China.
Enzyme Microb Technol
January 2025
Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA. Electronic address:
Microalgae-based biofuel production is cost-effective only in a biorefinery, where valuable co-products offset high costs. Fatty acids produced by photosynthetic microalgae can serve as raw materials for bioenergy and pharmaceuticals. This study aims to understand the metabolic imprints of Scenedesmus sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!