Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies.

Int J Hyperthermia

Department of Cell Biology and Genetics, Cancer Genomics Centre, Erasmus Medical Centre, Rotterdam, The Netherlands.

Published: January 2013

Local hyperthermia is an effective treatment modality to augment radio- and chemotherapy-based anti-cancer treatments. Although the effect of hyperthermia is pleotropic, recent experiments revealed that homologous recombination, a pathway of DNA repair, is directly inhibited by hyperthermia. The hyperthermia-induced DNA repair deficiency is enhanced by inhibitors of the cellular heat-shock response. Taken together, these results provide the rationale for the development of novel anti-cancer therapies that combine hyperthermia-induced homologous recombination deficiency with the systemic administration of drugs that specifically affect the viability of homologous recombination deficient cells and/or inhibit the heat-shock response, to locally sensitise cancer cells to DNA damaging agents.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02656736.2012.695427DOI Listing

Publication Analysis

Top Keywords

dna repair
12
homologous recombination
12
hyperthermia-induced dna
8
repair deficiency
8
heat-shock response
8
deficiency suggests
4
suggests novel
4
novel therapeutic
4
therapeutic anti-cancer
4
anti-cancer strategies
4

Similar Publications

Increased cardiac macrophages in -deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities.

Front Genet

January 2025

Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).

View Article and Find Full Text PDF

This study evaluates the effects of hydroxytyrosol (HT), a component of olive oil, on mammographic breast density reduction. We explored effects of HT on Wnt -catenin and other pathways involved in cancer stem cell renewal, DNA repair, cell proliferation, and differentiation. Twenty-five milligrams per day oral dose of HT was given for 12 months in pre- and postmenopausal women at increased risk of breast cancer.

View Article and Find Full Text PDF

is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of . However, the exact manner in which promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored.

View Article and Find Full Text PDF

Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.

View Article and Find Full Text PDF

Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!