When chronic pain patients are suspected of being non-compliant, their therapy can be withdrawn. Therefore, sensitive and specific confirmatory testing is important for identifying diversion and adherence. This work aimed to develop a novel liquid chromatography tandem mass spectrometry (LC-MS-MS) method to detect 14 opioids and six opioid glucuronide metabolites in urine with minimal sample preparation. Analytes included were morphine, oxymorphone, hydromorphone, oxycodone, hydrocodone, codeine, fentanyl, norfentanyl, 6-monoacetylmorphine, meperidine, normeperidine, propoxyphene, methadone, buprenorphine, morphine-3-glucuronide, morphine-6-glucuronide, oxymorphone glucuronide, hydromorphone glucuronide, codeine-6-glucuronide and norbuprenorphine glucuronide. Samples were processed by centrifugation and diluted in equal volume with a deuterated internal standard containing 14 opioids and four opioid glucuronides. The separation of all compounds was complete in nine minutes. The assay was linear between 10 and 1,000 ng/mL (fentanyl 0.25-25 ng/mL). Intra-assay imprecision (500 ng/mL, fentanyl 12.5 ng/mL) ranged from 1.0 to 8.4% coefficient of variation. Inter-assay precision ranged from 2.9 to 6.0%. Recovery was determined by spiking five patient specimens with opioid and opioid glucuronide standards at 100 ng/mL (fentanyl 2.5 ng/mL). Recoveries ranged from 82 to 107% (median 98.9%). The method correlated with our current quantitative LC-MS-MS assay for opioids, which employs different chromatography. Internal standards were not available for every analyte to critically evaluate for ion suppression. Instead, a novel approach was designed to achieve the most rigorous quality control possible, in which the recovery of each analyte was evaluated in each negative sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jat/bks063 | DOI Listing |
Talanta
March 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan. Electronic address:
Fentanyl and its analogs have emerged as the main factor behind the ongoing opioid abuse globally in recent years. However, the existing techniques for sensitive and accurate detection of fentanyl are often complex, laborious, expensive, and restricted to central healthcare facilities. We reported herein a plasmonic biochip fabricated by the femtosecond laser-induced nanostructures and plasmonic nanomaterials for sensitive SERS-based detection of fentanyl.
View Article and Find Full Text PDFChem Commun (Camb)
November 2024
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
In this work, we demonstrate a straightforward and versatile approach for fabricating flexible SERS substrates for highly sensitive fentanyl detection. Our design strategy integrates the synthesis of a yolk-shell structured plasmonic nanomaterial with a flexible cellulose substrate. The resulting SERS platform demonstrates excellent sensing capabilities, achieving a fentanyl detection limit as low as 4.
View Article and Find Full Text PDFClin Chem Lab Med
October 2024
Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
Paediatr Anaesth
December 2024
División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
J Chromatogr B Analyt Technol Biomed Life Sci
October 2024
Department of Forensic Science, Sam Houston State University, Box 2525, 1003 Bowers Blvd, Huntsville, TX 77341, United States. Electronic address:
Novel synthetic opioids are a class of drugs abused for their potent analgesic effect and are responsible for many fatal intoxications, particularly within the United States. A targeted assay was developed and validated using LC-MS/MS, capable of identifying nineteen fentalogs. Solid phase extraction was used to isolate analytes of interest from urine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!